123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752 |
- /*
- * MFRC522.cpp - Library to use ARDUINO RFID MODULE KIT 13.56 MHZ WITH TAGS I2C BY AROZCAN
- * MFRC522.cpp - Based on ARDUINO RFID MODULE KIT 13.56 MHZ WITH TAGS SPI Library BY COOQROBOT.
- * NOTE: Please also check the comments in MFRC522.h - they provide useful hints and background information.
- * Released into the public domain.
- * Author: arozcan @ https://github.com/arozcan/MFRC522-I2C-Library
- */
- #include <Arduino.h>
- #include "MFRC522_I2C.h"
- #include <Wire.h>
- /////////////////////////////////////////////////////////////////////////////////////
- // Functions for setting up the Arduino
- /////////////////////////////////////////////////////////////////////////////////////
- /**
- * Constructor.
- * Prepares the output pins.
- */
- MFRC522::MFRC522( byte chipAddress
- //byte resetPowerDownPin ///< Arduino pin connected to MFRC522's reset and power down input (Pin 6, NRSTPD, active low)
- ) {
- _chipAddress = chipAddress;
- // _resetPowerDownPin = resetPowerDownPin;
- } // End constructor
- /////////////////////////////////////////////////////////////////////////////////////
- // Basic interface functions for communicating with the MFRC522
- /////////////////////////////////////////////////////////////////////////////////////
- /**
- * Writes a byte to the specified register in the MFRC522 chip.
- * The interface is described in the datasheet section 8.1.2.
- */
- void MFRC522::PCD_WriteRegister( byte reg, ///< The register to write to. One of the PCD_Register enums.
- byte value ///< The value to write.
- ) {
- Wire.beginTransmission(_chipAddress);
- Wire.write(reg);
- Wire.write(value);
- Wire.endTransmission();
- } // End PCD_WriteRegister()
- /**
- * Writes a number of bytes to the specified register in the MFRC522 chip.
- * The interface is described in the datasheet section 8.1.2.
- */
- void MFRC522::PCD_WriteRegister( byte reg, ///< The register to write to. One of the PCD_Register enums.
- byte count, ///< The number of bytes to write to the register
- byte *values ///< The values to write. Byte array.
- ) {
- Wire.beginTransmission(_chipAddress);
- Wire.write(reg);
- for (byte index = 0; index < count; index++) {
- Wire.write(values[index]);
- }
- Wire.endTransmission();
- } // End PCD_WriteRegister()
- /**
- * Reads a byte from the specified register in the MFRC522 chip.
- * The interface is described in the datasheet section 8.1.2.
- */
- byte MFRC522::PCD_ReadRegister( byte reg ///< The register to read from. One of the PCD_Register enums.
- ) {
- byte value;
- //digitalWrite(_chipSelectPin, LOW); // Select slave
- Wire.beginTransmission(_chipAddress);
- Wire.write(reg);
- Wire.endTransmission();
- Wire.requestFrom(_chipAddress, 1);
- value = Wire.read();
- return value;
- } // End PCD_ReadRegister()
- /**
- * Reads a number of bytes from the specified register in the MFRC522 chip.
- * The interface is described in the datasheet section 8.1.2.
- */
- void MFRC522::PCD_ReadRegister( byte reg, ///< The register to read from. One of the PCD_Register enums.
- byte count, ///< The number of bytes to read
- byte *values, ///< Byte array to store the values in.
- byte rxAlign ///< Only bit positions rxAlign..7 in values[0] are updated.
- ) {
- if (count == 0) {
- return;
- }
- byte address = reg;
- byte index = 0; // Index in values array.
- Wire.beginTransmission(_chipAddress);
- Wire.write(address);
- Wire.endTransmission();
- Wire.requestFrom(_chipAddress, count);
- while (Wire.available()) {
- if (index == 0 && rxAlign) { // Only update bit positions rxAlign..7 in values[0]
- // Create bit mask for bit positions rxAlign..7
- byte mask = 0;
- for (byte i = rxAlign; i <= 7; i++) {
- mask |= (1 << i);
- }
- // Read value and tell that we want to read the same address again.
- byte value = Wire.read();
- // Apply mask to both current value of values[0] and the new data in value.
- values[0] = (values[index] & ~mask) | (value & mask);
- }
- else { // Normal case
- values[index] = Wire.read();
- }
- index++;
- }
- } // End PCD_ReadRegister()
- /**
- * Sets the bits given in mask in register reg.
- */
- void MFRC522::PCD_SetRegisterBitMask( byte reg, ///< The register to update. One of the PCD_Register enums.
- byte mask ///< The bits to set.
- ) {
- byte tmp;
- tmp = PCD_ReadRegister(reg);
- PCD_WriteRegister(reg, tmp | mask); // set bit mask
- } // End PCD_SetRegisterBitMask()
- /**
- * Clears the bits given in mask from register reg.
- */
- void MFRC522::PCD_ClearRegisterBitMask( byte reg, ///< The register to update. One of the PCD_Register enums.
- byte mask ///< The bits to clear.
- ) {
- byte tmp;
- tmp = PCD_ReadRegister(reg);
- PCD_WriteRegister(reg, tmp & (~mask)); // clear bit mask
- } // End PCD_ClearRegisterBitMask()
- /**
- * Use the CRC coprocessor in the MFRC522 to calculate a CRC_A.
- *
- * @return STATUS_OK on success, STATUS_??? otherwise.
- */
- byte MFRC522::PCD_CalculateCRC( byte *data, ///< In: Pointer to the data to transfer to the FIFO for CRC calculation.
- byte length, ///< In: The number of bytes to transfer.
- byte *result ///< Out: Pointer to result buffer. Result is written to result[0..1], low byte first.
- ) {
- PCD_WriteRegister(CommandReg, PCD_Idle); // Stop any active command.
- PCD_WriteRegister(DivIrqReg, 0x04); // Clear the CRCIRq interrupt request bit
- PCD_SetRegisterBitMask(FIFOLevelReg, 0x80); // FlushBuffer = 1, FIFO initialization
- PCD_WriteRegister(FIFODataReg, length, data); // Write data to the FIFO
- PCD_WriteRegister(CommandReg, PCD_CalcCRC); // Start the calculation
- // Wait for the CRC calculation to complete. Each iteration of the while-loop takes 17.73�s.
- word i = 5000;
- byte n;
- while (1) {
- n = PCD_ReadRegister(DivIrqReg); // DivIrqReg[7..0] bits are: Set2 reserved reserved MfinActIRq reserved CRCIRq reserved reserved
- if (n & 0x04) { // CRCIRq bit set - calculation done
- break;
- }
- if (--i == 0) { // The emergency break. We will eventually terminate on this one after 89ms. Communication with the MFRC522 might be down.
- return STATUS_TIMEOUT;
- }
- }
- PCD_WriteRegister(CommandReg, PCD_Idle); // Stop calculating CRC for new content in the FIFO.
- // Transfer the result from the registers to the result buffer
- result[0] = PCD_ReadRegister(CRCResultRegL);
- result[1] = PCD_ReadRegister(CRCResultRegH);
- return STATUS_OK;
- } // End PCD_CalculateCRC()
- /////////////////////////////////////////////////////////////////////////////////////
- // Functions for manipulating the MFRC522
- /////////////////////////////////////////////////////////////////////////////////////
- /**
- * Initializes the MFRC522 chip.
- */
- void MFRC522::PCD_Init() {
- // Set the chipSelectPin as digital output, do not select the slave yet
- // Set the resetPowerDownPin as digital output, do not reset or power down.
- // pinMode(_resetPowerDownPin, OUTPUT);
- // if (digitalRead(_resetPowerDownPin) == LOW) { //The MFRC522 chip is in power down mode.
- // digitalWrite(_resetPowerDownPin, HIGH); // Exit power down mode. This triggers a hard reset.
- // // Section 8.8.2 in the datasheet says the oscillator start-up time is the start up time of the crystal + 37,74�s. Let us be generous: 50ms.
- // delay(50);
- // }
- // else { // Perform a soft reset
- PCD_Reset();
- // }
- // When communicating with a PICC we need a timeout if something goes wrong.
- // f_timer = 13.56 MHz / (2*TPreScaler+1) where TPreScaler = [TPrescaler_Hi:TPrescaler_Lo].
- // TPrescaler_Hi are the four low bits in TModeReg. TPrescaler_Lo is TPrescalerReg.
- PCD_WriteRegister(TModeReg, 0x80); // TAuto=1; timer starts automatically at the end of the transmission in all communication modes at all speeds
- PCD_WriteRegister(TPrescalerReg, 0xA9); // TPreScaler = TModeReg[3..0]:TPrescalerReg, ie 0x0A9 = 169 => f_timer=40kHz, ie a timer period of 25�s.
- PCD_WriteRegister(TReloadRegH, 0x03); // Reload timer with 0x3E8 = 1000, ie 25ms before timeout.
- PCD_WriteRegister(TReloadRegL, 0xE8);
- PCD_WriteRegister(TxASKReg, 0x40); // Default 0x00. Force a 100 % ASK modulation independent of the ModGsPReg register setting
- PCD_WriteRegister(ModeReg, 0x3D); // Default 0x3F. Set the preset value for the CRC coprocessor for the CalcCRC command to 0x6363 (ISO 14443-3 part 6.2.4)
- PCD_AntennaOn(); // Enable the antenna driver pins TX1 and TX2 (they were disabled by the reset)
- } // End PCD_Init()
- /**
- * Performs a soft reset on the MFRC522 chip and waits for it to be ready again.
- */
- void MFRC522::PCD_Reset() {
- PCD_WriteRegister(CommandReg, PCD_SoftReset); // Issue the SoftReset command.
- // The datasheet does not mention how long the SoftRest command takes to complete.
- // But the MFRC522 might have been in soft power-down mode (triggered by bit 4 of CommandReg)
- // Section 8.8.2 in the datasheet says the oscillator start-up time is the start up time of the crystal + 37,74�s. Let us be generous: 50ms.
- delay(50);
- // Wait for the PowerDown bit in CommandReg to be cleared
- while (PCD_ReadRegister(CommandReg) & (1<<4)) {
- // PCD still restarting - unlikely after waiting 50ms, but better safe than sorry.
- }
- } // End PCD_Reset()
- /**
- * Turns the antenna on by enabling pins TX1 and TX2.
- * After a reset these pins are disabled.
- */
- void MFRC522::PCD_AntennaOn() {
- byte value = PCD_ReadRegister(TxControlReg);
- if ((value & 0x03) != 0x03) {
- PCD_WriteRegister(TxControlReg, value | 0x03);
- }
- } // End PCD_AntennaOn()
- /**
- * Turns the antenna off by disabling pins TX1 and TX2.
- */
- void MFRC522::PCD_AntennaOff() {
- PCD_ClearRegisterBitMask(TxControlReg, 0x03);
- } // End PCD_AntennaOff()
- /**
- * Get the current MFRC522 Receiver Gain (RxGain[2:0]) value.
- * See 9.3.3.6 / table 98 in http://www.nxp.com/documents/data_sheet/MFRC522.pdf
- * NOTE: Return value scrubbed with (0x07<<4)=01110000b as RCFfgReg may use reserved bits.
- *
- * @return Value of the RxGain, scrubbed to the 3 bits used.
- */
- byte MFRC522::PCD_GetAntennaGain() {
- return PCD_ReadRegister(RFCfgReg) & (0x07<<4);
- } // End PCD_GetAntennaGain()
- /**
- * Set the MFRC522 Receiver Gain (RxGain) to value specified by given mask.
- * See 9.3.3.6 / table 98 in http://www.nxp.com/documents/data_sheet/MFRC522.pdf
- * NOTE: Given mask is scrubbed with (0x07<<4)=01110000b as RCFfgReg may use reserved bits.
- */
- void MFRC522::PCD_SetAntennaGain(byte mask) {
- if (PCD_GetAntennaGain() != mask) { // only bother if there is a change
- PCD_ClearRegisterBitMask(RFCfgReg, (0x07<<4)); // clear needed to allow 000 pattern
- PCD_SetRegisterBitMask(RFCfgReg, mask & (0x07<<4)); // only set RxGain[2:0] bits
- }
- } // End PCD_SetAntennaGain()
- /**
- * Performs a self-test of the MFRC522
- * See 16.1.1 in http://www.nxp.com/documents/data_sheet/MFRC522.pdf
- *
- * @return Whether or not the test passed.
- */
- bool MFRC522::PCD_PerformSelfTest() {
- // This follows directly the steps outlined in 16.1.1
- // 1. Perform a soft reset.
- PCD_Reset();
- // 2. Clear the internal buffer by writing 25 bytes of 00h
- byte ZEROES[25] = {0x00};
- PCD_SetRegisterBitMask(FIFOLevelReg, 0x80); // flush the FIFO buffer
- PCD_WriteRegister(FIFODataReg, 25, ZEROES); // write 25 bytes of 00h to FIFO
- PCD_WriteRegister(CommandReg, PCD_Mem); // transfer to internal buffer
- // 3. Enable self-test
- PCD_WriteRegister(AutoTestReg, 0x09);
- // 4. Write 00h to FIFO buffer
- PCD_WriteRegister(FIFODataReg, 0x00);
- // 5. Start self-test by issuing the CalcCRC command
- PCD_WriteRegister(CommandReg, PCD_CalcCRC);
- // 6. Wait for self-test to complete
- word i;
- byte n;
- for (i = 0; i < 0xFF; i++) {
- n = PCD_ReadRegister(DivIrqReg); // DivIrqReg[7..0] bits are: Set2 reserved reserved MfinActIRq reserved CRCIRq reserved reserved
- if (n & 0x04) { // CRCIRq bit set - calculation done
- break;
- }
- }
- PCD_WriteRegister(CommandReg, PCD_Idle); // Stop calculating CRC for new content in the FIFO.
- // 7. Read out resulting 64 bytes from the FIFO buffer.
- byte result[64];
- PCD_ReadRegister(FIFODataReg, 64, result, 0);
- // Auto self-test done
- // Reset AutoTestReg register to be 0 again. Required for normal operation.
- PCD_WriteRegister(AutoTestReg, 0x00);
- // Determine firmware version (see section 9.3.4.8 in spec)
- byte version = PCD_ReadRegister(VersionReg);
- // Pick the appropriate reference values
- const byte *reference;
- switch (version) {
- case 0x88: // Fudan Semiconductor FM17522 clone
- reference = FM17522_firmware_reference;
- break;
- case 0x90: // Version 0.0
- reference = MFRC522_firmware_referenceV0_0;
- break;
- case 0x91: // Version 1.0
- reference = MFRC522_firmware_referenceV1_0;
- break;
- case 0x92: // Version 2.0
- reference = MFRC522_firmware_referenceV2_0;
- break;
- default: // Unknown version
- return false;
- }
- // Verify that the results match up to our expectations
- for (i = 0; i < 64; i++) {
- if (result[i] != pgm_read_byte(&(reference[i]))) {
- return false;
- }
- }
- // Test passed; all is good.
- return true;
- } // End PCD_PerformSelfTest()
- /////////////////////////////////////////////////////////////////////////////////////
- // Functions for communicating with PICCs
- /////////////////////////////////////////////////////////////////////////////////////
- /**
- * Executes the Transceive command.
- * CRC validation can only be done if backData and backLen are specified.
- *
- * @return STATUS_OK on success, STATUS_??? otherwise.
- */
- byte MFRC522::PCD_TransceiveData( byte *sendData, ///< Pointer to the data to transfer to the FIFO.
- byte sendLen, ///< Number of bytes to transfer to the FIFO.
- byte *backData, ///< NULL or pointer to buffer if data should be read back after executing the command.
- byte *backLen, ///< In: Max number of bytes to write to *backData. Out: The number of bytes returned.
- byte *validBits, ///< In/Out: The number of valid bits in the last byte. 0 for 8 valid bits. Default NULL.
- byte rxAlign, ///< In: Defines the bit position in backData[0] for the first bit received. Default 0.
- bool checkCRC ///< In: True => The last two bytes of the response is assumed to be a CRC_A that must be validated.
- ) {
- byte waitIRq = 0x30; // RxIRq and IdleIRq
- return PCD_CommunicateWithPICC(PCD_Transceive, waitIRq, sendData, sendLen, backData, backLen, validBits, rxAlign, checkCRC);
- } // End PCD_TransceiveData()
- /**
- * Transfers data to the MFRC522 FIFO, executes a command, waits for completion and transfers data back from the FIFO.
- * CRC validation can only be done if backData and backLen are specified.
- *
- * @return STATUS_OK on success, STATUS_??? otherwise.
- */
- byte MFRC522::PCD_CommunicateWithPICC( byte command, ///< The command to execute. One of the PCD_Command enums.
- byte waitIRq, ///< The bits in the ComIrqReg register that signals successful completion of the command.
- byte *sendData, ///< Pointer to the data to transfer to the FIFO.
- byte sendLen, ///< Number of bytes to transfer to the FIFO.
- byte *backData, ///< NULL or pointer to buffer if data should be read back after executing the command.
- byte *backLen, ///< In: Max number of bytes to write to *backData. Out: The number of bytes returned.
- byte *validBits, ///< In/Out: The number of valid bits in the last byte. 0 for 8 valid bits.
- byte rxAlign, ///< In: Defines the bit position in backData[0] for the first bit received. Default 0.
- bool checkCRC ///< In: True => The last two bytes of the response is assumed to be a CRC_A that must be validated.
- ) {
- byte n, _validBits;
- unsigned int i;
- // Prepare values for BitFramingReg
- byte txLastBits = validBits ? *validBits : 0;
- byte bitFraming = (rxAlign << 4) + txLastBits; // RxAlign = BitFramingReg[6..4]. TxLastBits = BitFramingReg[2..0]
- PCD_WriteRegister(CommandReg, PCD_Idle); // Stop any active command.
- PCD_WriteRegister(ComIrqReg, 0x7F); // Clear all seven interrupt request bits
- PCD_SetRegisterBitMask(FIFOLevelReg, 0x80); // FlushBuffer = 1, FIFO initialization
- PCD_WriteRegister(FIFODataReg, sendLen, sendData); // Write sendData to the FIFO
- PCD_WriteRegister(BitFramingReg, bitFraming); // Bit adjustments
- PCD_WriteRegister(CommandReg, command); // Execute the command
- if (command == PCD_Transceive) {
- PCD_SetRegisterBitMask(BitFramingReg, 0x80); // StartSend=1, transmission of data starts
- }
- // Wait for the command to complete.
- // In PCD_Init() we set the TAuto flag in TModeReg. This means the timer automatically starts when the PCD stops transmitting.
- // Each iteration of the do-while-loop takes 17.86�s.
- i = 2000;
- while (1) {
- n = PCD_ReadRegister(ComIrqReg); // ComIrqReg[7..0] bits are: Set1 TxIRq RxIRq IdleIRq HiAlertIRq LoAlertIRq ErrIRq TimerIRq
- if (n & waitIRq) { // One of the interrupts that signal success has been set.
- break;
- }
- if (n & 0x01) { // Timer interrupt - nothing received in 25ms
- return STATUS_TIMEOUT;
- }
- if (--i == 0) { // The emergency break. If all other condions fail we will eventually terminate on this one after 35.7ms. Communication with the MFRC522 might be down.
- return STATUS_TIMEOUT;
- }
- }
- // Stop now if any errors except collisions were detected.
- byte errorRegValue = PCD_ReadRegister(ErrorReg); // ErrorReg[7..0] bits are: WrErr TempErr reserved BufferOvfl CollErr CRCErr ParityErr ProtocolErr
- if (errorRegValue & 0x13) { // BufferOvfl ParityErr ProtocolErr
- return STATUS_ERROR;
- }
- // If the caller wants data back, get it from the MFRC522.
- if (backData && backLen) {
- n = PCD_ReadRegister(FIFOLevelReg); // Number of bytes in the FIFO
- if (n > *backLen) {
- return STATUS_NO_ROOM;
- }
- *backLen = n; // Number of bytes returned
- PCD_ReadRegister(FIFODataReg, n, backData, rxAlign); // Get received data from FIFO
- _validBits = PCD_ReadRegister(ControlReg) & 0x07; // RxLastBits[2:0] indicates the number of valid bits in the last received byte. If this value is 000b, the whole byte is valid.
- if (validBits) {
- *validBits = _validBits;
- }
- }
- // Tell about collisions
- if (errorRegValue & 0x08) { // CollErr
- return STATUS_COLLISION;
- }
- // Perform CRC_A validation if requested.
- if (backData && backLen && checkCRC) {
- // In this case a MIFARE Classic NAK is not OK.
- if (*backLen == 1 && _validBits == 4) {
- return STATUS_MIFARE_NACK;
- }
- // We need at least the CRC_A value and all 8 bits of the last byte must be received.
- if (*backLen < 2 || _validBits != 0) {
- return STATUS_CRC_WRONG;
- }
- // Verify CRC_A - do our own calculation and store the control in controlBuffer.
- byte controlBuffer[2];
- n = PCD_CalculateCRC(&backData[0], *backLen - 2, &controlBuffer[0]);
- if (n != STATUS_OK) {
- return n;
- }
- if ((backData[*backLen - 2] != controlBuffer[0]) || (backData[*backLen - 1] != controlBuffer[1])) {
- return STATUS_CRC_WRONG;
- }
- }
- return STATUS_OK;
- } // End PCD_CommunicateWithPICC()
- /**
- * Transmits a REQuest command, Type A. Invites PICCs in state IDLE to go to READY and prepare for anticollision or selection. 7 bit frame.
- * Beware: When two PICCs are in the field at the same time I often get STATUS_TIMEOUT - probably due do bad antenna design.
- *
- * @return STATUS_OK on success, STATUS_??? otherwise.
- */
- byte MFRC522::PICC_RequestA(byte *bufferATQA, ///< The buffer to store the ATQA (Answer to request) in
- byte *bufferSize ///< Buffer size, at least two bytes. Also number of bytes returned if STATUS_OK.
- ) {
- return PICC_REQA_or_WUPA(PICC_CMD_REQA, bufferATQA, bufferSize);
- } // End PICC_RequestA()
- /**
- * Transmits a Wake-UP command, Type A. Invites PICCs in state IDLE and HALT to go to READY(*) and prepare for anticollision or selection. 7 bit frame.
- * Beware: When two PICCs are in the field at the same time I often get STATUS_TIMEOUT - probably due do bad antenna design.
- *
- * @return STATUS_OK on success, STATUS_??? otherwise.
- */
- byte MFRC522::PICC_WakeupA( byte *bufferATQA, ///< The buffer to store the ATQA (Answer to request) in
- byte *bufferSize ///< Buffer size, at least two bytes. Also number of bytes returned if STATUS_OK.
- ) {
- return PICC_REQA_or_WUPA(PICC_CMD_WUPA, bufferATQA, bufferSize);
- } // End PICC_WakeupA()
- /**
- * Transmits REQA or WUPA commands.
- * Beware: When two PICCs are in the field at the same time I often get STATUS_TIMEOUT - probably due do bad antenna design.
- *
- * @return STATUS_OK on success, STATUS_??? otherwise.
- */
- byte MFRC522::PICC_REQA_or_WUPA( byte command, ///< The command to send - PICC_CMD_REQA or PICC_CMD_WUPA
- byte *bufferATQA, ///< The buffer to store the ATQA (Answer to request) in
- byte *bufferSize ///< Buffer size, at least two bytes. Also number of bytes returned if STATUS_OK.
- ) {
- byte validBits;
- byte status;
- if (bufferATQA == NULL || *bufferSize < 2) { // The ATQA response is 2 bytes long.
- return STATUS_NO_ROOM;
- }
- PCD_ClearRegisterBitMask(CollReg, 0x80); // ValuesAfterColl=1 => Bits received after collision are cleared.
- validBits = 7; // For REQA and WUPA we need the short frame format - transmit only 7 bits of the last (and only) byte. TxLastBits = BitFramingReg[2..0]
- status = PCD_TransceiveData(&command, 1, bufferATQA, bufferSize, &validBits);
- if (status != STATUS_OK) {
- return status;
- }
- if (*bufferSize != 2 || validBits != 0) { // ATQA must be exactly 16 bits.
- return STATUS_ERROR;
- }
- return STATUS_OK;
- } // End PICC_REQA_or_WUPA()
- /**
- * Transmits SELECT/ANTICOLLISION commands to select a single PICC.
- * Before calling this function the PICCs must be placed in the READY(*) state by calling PICC_RequestA() or PICC_WakeupA().
- * On success:
- * - The chosen PICC is in state ACTIVE(*) and all other PICCs have returned to state IDLE/HALT. (Figure 7 of the ISO/IEC 14443-3 draft.)
- * - The UID size and value of the chosen PICC is returned in *uid along with the SAK.
- *
- * A PICC UID consists of 4, 7 or 10 bytes.
- * Only 4 bytes can be specified in a SELECT command, so for the longer UIDs two or three iterations are used:
- * UID size Number of UID bytes Cascade levels Example of PICC
- * ======== =================== ============== ===============
- * single 4 1 MIFARE Classic
- * double 7 2 MIFARE Ultralight
- * triple 10 3 Not currently in use?
- *
- * @return STATUS_OK on success, STATUS_??? otherwise.
- */
- byte MFRC522::PICC_Select( Uid *uid, ///< Pointer to Uid struct. Normally output, but can also be used to supply a known UID.
- byte validBits ///< The number of known UID bits supplied in *uid. Normally 0. If set you must also supply uid->size.
- ) {
- bool uidComplete;
- bool selectDone;
- bool useCascadeTag;
- byte cascadeLevel = 1;
- byte result;
- byte count;
- byte index;
- byte uidIndex; // The first index in uid->uidByte[] that is used in the current Cascade Level.
- int8_t currentLevelKnownBits; // The number of known UID bits in the current Cascade Level.
- byte buffer[9]; // The SELECT/ANTICOLLISION commands uses a 7 byte standard frame + 2 bytes CRC_A
- byte bufferUsed; // The number of bytes used in the buffer, ie the number of bytes to transfer to the FIFO.
- byte rxAlign; // Used in BitFramingReg. Defines the bit position for the first bit received.
- byte txLastBits; // Used in BitFramingReg. The number of valid bits in the last transmitted byte.
- byte *responseBuffer;
- byte responseLength;
- // Description of buffer structure:
- // Byte 0: SEL Indicates the Cascade Level: PICC_CMD_SEL_CL1, PICC_CMD_SEL_CL2 or PICC_CMD_SEL_CL3
- // Byte 1: NVB Number of Valid Bits (in complete command, not just the UID): High nibble: complete bytes, Low nibble: Extra bits.
- // Byte 2: UID-data or CT See explanation below. CT means Cascade Tag.
- // Byte 3: UID-data
- // Byte 4: UID-data
- // Byte 5: UID-data
- // Byte 6: BCC Block Check Character - XOR of bytes 2-5
- // Byte 7: CRC_A
- // Byte 8: CRC_A
- // The BCC and CRC_A is only transmitted if we know all the UID bits of the current Cascade Level.
- //
- // Description of bytes 2-5: (Section 6.5.4 of the ISO/IEC 14443-3 draft: UID contents and cascade levels)
- // UID size Cascade level Byte2 Byte3 Byte4 Byte5
- // ======== ============= ===== ===== ===== =====
- // 4 bytes 1 uid0 uid1 uid2 uid3
- // 7 bytes 1 CT uid0 uid1 uid2
- // 2 uid3 uid4 uid5 uid6
- // 10 bytes 1 CT uid0 uid1 uid2
- // 2 CT uid3 uid4 uid5
- // 3 uid6 uid7 uid8 uid9
- // Sanity checks
- if (validBits > 80) {
- return STATUS_INVALID;
- }
- // Prepare MFRC522
- PCD_ClearRegisterBitMask(CollReg, 0x80); // ValuesAfterColl=1 => Bits received after collision are cleared.
- // Repeat Cascade Level loop until we have a complete UID.
- uidComplete = false;
- while (!uidComplete) {
- // Set the Cascade Level in the SEL byte, find out if we need to use the Cascade Tag in byte 2.
- switch (cascadeLevel) {
- case 1:
- buffer[0] = PICC_CMD_SEL_CL1;
- uidIndex = 0;
- useCascadeTag = validBits && uid->size > 4; // When we know that the UID has more than 4 bytes
- break;
- case 2:
- buffer[0] = PICC_CMD_SEL_CL2;
- uidIndex = 3;
- useCascadeTag = validBits && uid->size > 7; // When we know that the UID has more than 7 bytes
- break;
- case 3:
- buffer[0] = PICC_CMD_SEL_CL3;
- uidIndex = 6;
- useCascadeTag = false; // Never used in CL3.
- break;
- default:
- return STATUS_INTERNAL_ERROR;
- break;
- }
- // How many UID bits are known in this Cascade Level?
- currentLevelKnownBits = validBits - (8 * uidIndex);
- if (currentLevelKnownBits < 0) {
- currentLevelKnownBits = 0;
- }
- // Copy the known bits from uid->uidByte[] to buffer[]
- index = 2; // destination index in buffer[]
- if (useCascadeTag) {
- buffer[index++] = PICC_CMD_CT;
- }
- byte bytesToCopy = currentLevelKnownBits / 8 + (currentLevelKnownBits % 8 ? 1 : 0); // The number of bytes needed to represent the known bits for this level.
- if (bytesToCopy) {
- byte maxBytes = useCascadeTag ? 3 : 4; // Max 4 bytes in each Cascade Level. Only 3 left if we use the Cascade Tag
- if (bytesToCopy > maxBytes) {
- bytesToCopy = maxBytes;
- }
- for (count = 0; count < bytesToCopy; count++) {
- buffer[index++] = uid->uidByte[uidIndex + count];
- }
- }
- // Now that the data has been copied we need to include the 8 bits in CT in currentLevelKnownBits
- if (useCascadeTag) {
- currentLevelKnownBits += 8;
- }
- // Repeat anti collision loop until we can transmit all UID bits + BCC and receive a SAK - max 32 iterations.
- selectDone = false;
- while (!selectDone) {
- // Find out how many bits and bytes to send and receive.
- if (currentLevelKnownBits >= 32) { // All UID bits in this Cascade Level are known. This is a SELECT.
- //Serial.print(F("SELECT: currentLevelKnownBits=")); Serial.println(currentLevelKnownBits, DEC);
- buffer[1] = 0x70; // NVB - Number of Valid Bits: Seven whole bytes
- // Calculate BCC - Block Check Character
- buffer[6] = buffer[2] ^ buffer[3] ^ buffer[4] ^ buffer[5];
- // Calculate CRC_A
- result = PCD_CalculateCRC(buffer, 7, &buffer[7]);
- if (result != STATUS_OK) {
- return result;
- }
- txLastBits = 0; // 0 => All 8 bits are valid.
- bufferUsed = 9;
- // Store response in the last 3 bytes of buffer (BCC and CRC_A - not needed after tx)
- responseBuffer = &buffer[6];
- responseLength = 3;
- }
- else { // This is an ANTICOLLISION.
- //Serial.print(F("ANTICOLLISION: currentLevelKnownBits=")); Serial.println(currentLevelKnownBits, DEC);
- txLastBits = currentLevelKnownBits % 8;
- count = currentLevelKnownBits / 8; // Number of whole bytes in the UID part.
- index = 2 + count; // Number of whole bytes: SEL + NVB + UIDs
- buffer[1] = (index << 4) + txLastBits; // NVB - Number of Valid Bits
- bufferUsed = index + (txLastBits ? 1 : 0);
- // Store response in the unused part of buffer
- responseBuffer = &buffer[index];
- responseLength = sizeof(buffer) - index;
- }
- // Set bit adjustments
- rxAlign = txLastBits; // Having a seperate variable is overkill. But it makes the next line easier to read.
- PCD_WriteRegister(BitFramingReg, (rxAlign << 4) + txLastBits); // RxAlign = BitFramingReg[6..4]. TxLastBits = BitFramingReg[2..0]
- // Transmit the buffer and receive the response.
- result = PCD_TransceiveData(buffer, bufferUsed, responseBuffer, &responseLength, &txLastBits, rxAlign);
- if (result == STATUS_COLLISION) { // More than one PICC in the field => collision.
- result = PCD_ReadRegister(CollReg); // CollReg[7..0] bits are: ValuesAfterColl reserved CollPosNotValid CollPos[4:0]
- if (result & 0x20) { // CollPosNotValid
- return STATUS_COLLISION; // Without a valid collision position we cannot continue
- }
- byte collisionPos = result & 0x1F; // Values 0-31, 0 means bit 32.
- if (collisionPos == 0) {
- collisionPos = 32;
- }
- if (collisionPos <= currentLevelKnownBits) { // No progress - should not happen
- return STATUS_INTERNAL_ERROR;
- }
- // Choose the PICC with the bit set.
- currentLevelKnownBits = collisionPos;
- count = (currentLevelKnownBits - 1) % 8; // The bit to modify
- index = 1 + (currentLevelKnownBits / 8) + (count ? 1 : 0); // First byte is index 0.
- buffer[index] |= (1 << count);
- }
- else if (result != STATUS_OK) {
- return result;
- }
- else { // STATUS_OK
- if (currentLevelKnownBits >= 32) { // This was a SELECT.
- selectDone = true; // No more anticollision
- // We continue below outside the while.
- }
- else { // This was an ANTICOLLISION.
- // We now have all 32 bits of the UID in this Cascade Level
- currentLevelKnownBits = 32;
- // Run loop again to do the SELECT.
- }
- }
- } // End of while (!selectDone)
- // We do not check the CBB - it was constructed by us above.
- // Copy the found UID bytes from buffer[] to uid->uidByte[]
- index = (buffer[2] == PICC_CMD_CT) ? 3 : 2; // source index in buffer[]
- bytesToCopy = (buffer[2] == PICC_CMD_CT) ? 3 : 4;
- for (count = 0; count < bytesToCopy; count++) {
- uid->uidByte[uidIndex + count] = buffer[index++];
- }
- // Check response SAK (Select Acknowledge)
- if (responseLength != 3 || txLastBits != 0) { // SAK must be exactly 24 bits (1 byte + CRC_A).
- return STATUS_ERROR;
- }
- // Verify CRC_A - do our own calculation and store the control in buffer[2..3] - those bytes are not needed anymore.
- result = PCD_CalculateCRC(responseBuffer, 1, &buffer[2]);
- if (result != STATUS_OK) {
- return result;
- }
- if ((buffer[2] != responseBuffer[1]) || (buffer[3] != responseBuffer[2])) {
- return STATUS_CRC_WRONG;
- }
- if (responseBuffer[0] & 0x04) { // Cascade bit set - UID not complete yes
- cascadeLevel++;
- }
- else {
- uidComplete = true;
- uid->sak = responseBuffer[0];
- }
- } // End of while (!uidComplete)
- // Set correct uid->size
- uid->size = 3 * cascadeLevel + 1;
- return STATUS_OK;
- } // End PICC_Select()
- /**
- * Instructs a PICC in state ACTIVE(*) to go to state HALT.
- *
- * @return STATUS_OK on success, STATUS_??? otherwise.
- */
- byte MFRC522::PICC_HaltA() {
- byte result;
- byte buffer[4];
- // Build command buffer
- buffer[0] = PICC_CMD_HLTA;
- buffer[1] = 0;
- // Calculate CRC_A
- result = PCD_CalculateCRC(buffer, 2, &buffer[2]);
- if (result != STATUS_OK) {
- return result;
- }
- // Send the command.
- // The standard says:
- // If the PICC responds with any modulation during a period of 1 ms after the end of the frame containing the
- // HLTA command, this response shall be interpreted as 'not acknowledge'.
- // We interpret that this way: Only STATUS_TIMEOUT is an success.
- result = PCD_TransceiveData(buffer, sizeof(buffer), NULL, 0);
- if (result == STATUS_TIMEOUT) {
- return STATUS_OK;
- }
- if (result == STATUS_OK) { // That is ironically NOT ok in this case ;-)
- return STATUS_ERROR;
- }
- return result;
- } // End PICC_HaltA()
- /////////////////////////////////////////////////////////////////////////////////////
- // Functions for communicating with MIFARE PICCs
- /////////////////////////////////////////////////////////////////////////////////////
- /**
- * Executes the MFRC522 MFAuthent command.
- * This command manages MIFARE authentication to enable a secure communication to any MIFARE Mini, MIFARE 1K and MIFARE 4K card.
- * The authentication is described in the MFRC522 datasheet section 10.3.1.9 and http://www.nxp.com/documents/data_sheet/MF1S503x.pdf section 10.1.
- * For use with MIFARE Classic PICCs.
- * The PICC must be selected - ie in state ACTIVE(*) - before calling this function.
- * Remember to call PCD_StopCrypto1() after communicating with the authenticated PICC - otherwise no new communications can start.
- *
- * All keys are set to FFFFFFFFFFFFh at chip delivery.
- *
- * @return STATUS_OK on success, STATUS_??? otherwise. Probably STATUS_TIMEOUT if you supply the wrong key.
- */
- byte MFRC522::PCD_Authenticate(byte command, ///< PICC_CMD_MF_AUTH_KEY_A or PICC_CMD_MF_AUTH_KEY_B
- byte blockAddr, ///< The block number. See numbering in the comments in the .h file.
- MIFARE_Key *key, ///< Pointer to the Crypteo1 key to use (6 bytes)
- Uid *uid ///< Pointer to Uid struct. The first 4 bytes of the UID is used.
- ) {
- byte waitIRq = 0x10; // IdleIRq
- // Build command buffer
- byte sendData[12];
- sendData[0] = command;
- sendData[1] = blockAddr;
- for (byte i = 0; i < MF_KEY_SIZE; i++) { // 6 key bytes
- sendData[2+i] = key->keyByte[i];
- }
- for (byte i = 0; i < 4; i++) { // The first 4 bytes of the UID
- sendData[8+i] = uid->uidByte[i];
- }
- // Start the authentication.
- return PCD_CommunicateWithPICC(PCD_MFAuthent, waitIRq, &sendData[0], sizeof(sendData));
- } // End PCD_Authenticate()
- /**
- * Used to exit the PCD from its authenticated state.
- * Remember to call this function after communicating with an authenticated PICC - otherwise no new communications can start.
- */
- void MFRC522::PCD_StopCrypto1() {
- // Clear MFCrypto1On bit
- PCD_ClearRegisterBitMask(Status2Reg, 0x08); // Status2Reg[7..0] bits are: TempSensClear I2CForceHS reserved reserved MFCrypto1On ModemState[2:0]
- } // End PCD_StopCrypto1()
- /**
- * Reads 16 bytes (+ 2 bytes CRC_A) from the active PICC.
- *
- * For MIFARE Classic the sector containing the block must be authenticated before calling this function.
- *
- * For MIFARE Ultralight only addresses 00h to 0Fh are decoded.
- * The MF0ICU1 returns a NAK for higher addresses.
- * The MF0ICU1 responds to the READ command by sending 16 bytes starting from the page address defined by the command argument.
- * For example; if blockAddr is 03h then pages 03h, 04h, 05h, 06h are returned.
- * A roll-back is implemented: If blockAddr is 0Eh, then the contents of pages 0Eh, 0Fh, 00h and 01h are returned.
- *
- * The buffer must be at least 18 bytes because a CRC_A is also returned.
- * Checks the CRC_A before returning STATUS_OK.
- *
- * @return STATUS_OK on success, STATUS_??? otherwise.
- */
- byte MFRC522::MIFARE_Read( byte blockAddr, ///< MIFARE Classic: The block (0-0xff) number. MIFARE Ultralight: The first page to return data from.
- byte *buffer, ///< The buffer to store the data in
- byte *bufferSize ///< Buffer size, at least 18 bytes. Also number of bytes returned if STATUS_OK.
- ) {
- byte result;
- // Sanity check
- if (buffer == NULL || *bufferSize < 18) {
- return STATUS_NO_ROOM;
- }
- // Build command buffer
- buffer[0] = PICC_CMD_MF_READ;
- buffer[1] = blockAddr;
- // Calculate CRC_A
- result = PCD_CalculateCRC(buffer, 2, &buffer[2]);
- if (result != STATUS_OK) {
- return result;
- }
- // Transmit the buffer and receive the response, validate CRC_A.
- return PCD_TransceiveData(buffer, 4, buffer, bufferSize, NULL, 0, true);
- } // End MIFARE_Read()
- /**
- * Writes 16 bytes to the active PICC.
- *
- * For MIFARE Classic the sector containing the block must be authenticated before calling this function.
- *
- * For MIFARE Ultralight the operation is called "COMPATIBILITY WRITE".
- * Even though 16 bytes are transferred to the Ultralight PICC, only the least significant 4 bytes (bytes 0 to 3)
- * are written to the specified address. It is recommended to set the remaining bytes 04h to 0Fh to all logic 0.
- * *
- * @return STATUS_OK on success, STATUS_??? otherwise.
- */
- byte MFRC522::MIFARE_Write( byte blockAddr, ///< MIFARE Classic: The block (0-0xff) number. MIFARE Ultralight: The page (2-15) to write to.
- byte *buffer, ///< The 16 bytes to write to the PICC
- byte bufferSize ///< Buffer size, must be at least 16 bytes. Exactly 16 bytes are written.
- ) {
- byte result;
- // Sanity check
- if (buffer == NULL || bufferSize < 16) {
- return STATUS_INVALID;
- }
- // Mifare Classic protocol requires two communications to perform a write.
- // Step 1: Tell the PICC we want to write to block blockAddr.
- byte cmdBuffer[2];
- cmdBuffer[0] = PICC_CMD_MF_WRITE;
- cmdBuffer[1] = blockAddr;
- result = PCD_MIFARE_Transceive(cmdBuffer, 2); // Adds CRC_A and checks that the response is MF_ACK.
- if (result != STATUS_OK) {
- return result;
- }
- // Step 2: Transfer the data
- result = PCD_MIFARE_Transceive(buffer, bufferSize); // Adds CRC_A and checks that the response is MF_ACK.
- if (result != STATUS_OK) {
- return result;
- }
- return STATUS_OK;
- } // End MIFARE_Write()
- /**
- * Writes a 4 byte page to the active MIFARE Ultralight PICC.
- *
- * @return STATUS_OK on success, STATUS_??? otherwise.
- */
- byte MFRC522::MIFARE_Ultralight_Write( byte page, ///< The page (2-15) to write to.
- byte *buffer, ///< The 4 bytes to write to the PICC
- byte bufferSize ///< Buffer size, must be at least 4 bytes. Exactly 4 bytes are written.
- ) {
- byte result;
- // Sanity check
- if (buffer == NULL || bufferSize < 4) {
- return STATUS_INVALID;
- }
- // Build commmand buffer
- byte cmdBuffer[6];
- cmdBuffer[0] = PICC_CMD_UL_WRITE;
- cmdBuffer[1] = page;
- memcpy(&cmdBuffer[2], buffer, 4);
- // Perform the write
- result = PCD_MIFARE_Transceive(cmdBuffer, 6); // Adds CRC_A and checks that the response is MF_ACK.
- if (result != STATUS_OK) {
- return result;
- }
- return STATUS_OK;
- } // End MIFARE_Ultralight_Write()
- /**
- * MIFARE Decrement subtracts the delta from the value of the addressed block, and stores the result in a volatile memory.
- * For MIFARE Classic only. The sector containing the block must be authenticated before calling this function.
- * Only for blocks in "value block" mode, ie with access bits [C1 C2 C3] = [110] or [001].
- * Use MIFARE_Transfer() to store the result in a block.
- *
- * @return STATUS_OK on success, STATUS_??? otherwise.
- */
- byte MFRC522::MIFARE_Decrement( byte blockAddr, ///< The block (0-0xff) number.
- long delta ///< This number is subtracted from the value of block blockAddr.
- ) {
- return MIFARE_TwoStepHelper(PICC_CMD_MF_DECREMENT, blockAddr, delta);
- } // End MIFARE_Decrement()
- /**
- * MIFARE Increment adds the delta to the value of the addressed block, and stores the result in a volatile memory.
- * For MIFARE Classic only. The sector containing the block must be authenticated before calling this function.
- * Only for blocks in "value block" mode, ie with access bits [C1 C2 C3] = [110] or [001].
- * Use MIFARE_Transfer() to store the result in a block.
- *
- * @return STATUS_OK on success, STATUS_??? otherwise.
- */
- byte MFRC522::MIFARE_Increment( byte blockAddr, ///< The block (0-0xff) number.
- long delta ///< This number is added to the value of block blockAddr.
- ) {
- return MIFARE_TwoStepHelper(PICC_CMD_MF_INCREMENT, blockAddr, delta);
- } // End MIFARE_Increment()
- /**
- * MIFARE Restore copies the value of the addressed block into a volatile memory.
- * For MIFARE Classic only. The sector containing the block must be authenticated before calling this function.
- * Only for blocks in "value block" mode, ie with access bits [C1 C2 C3] = [110] or [001].
- * Use MIFARE_Transfer() to store the result in a block.
- *
- * @return STATUS_OK on success, STATUS_??? otherwise.
- */
- byte MFRC522::MIFARE_Restore( byte blockAddr ///< The block (0-0xff) number.
- ) {
- // The datasheet describes Restore as a two step operation, but does not explain what data to transfer in step 2.
- // Doing only a single step does not work, so I chose to transfer 0L in step two.
- return MIFARE_TwoStepHelper(PICC_CMD_MF_RESTORE, blockAddr, 0L);
- } // End MIFARE_Restore()
- /**
- * Helper function for the two-step MIFARE Classic protocol operations Decrement, Increment and Restore.
- *
- * @return STATUS_OK on success, STATUS_??? otherwise.
- */
- byte MFRC522::MIFARE_TwoStepHelper( byte command, ///< The command to use
- byte blockAddr, ///< The block (0-0xff) number.
- long data ///< The data to transfer in step 2
- ) {
- byte result;
- byte cmdBuffer[2]; // We only need room for 2 bytes.
- // Step 1: Tell the PICC the command and block address
- cmdBuffer[0] = command;
- cmdBuffer[1] = blockAddr;
- result = PCD_MIFARE_Transceive( cmdBuffer, 2); // Adds CRC_A and checks that the response is MF_ACK.
- if (result != STATUS_OK) {
- return result;
- }
- // Step 2: Transfer the data
- result = PCD_MIFARE_Transceive( (byte *)&data, 4, true); // Adds CRC_A and accept timeout as success.
- if (result != STATUS_OK) {
- return result;
- }
- return STATUS_OK;
- } // End MIFARE_TwoStepHelper()
- /**
- * MIFARE Transfer writes the value stored in the volatile memory into one MIFARE Classic block.
- * For MIFARE Classic only. The sector containing the block must be authenticated before calling this function.
- * Only for blocks in "value block" mode, ie with access bits [C1 C2 C3] = [110] or [001].
- *
- * @return STATUS_OK on success, STATUS_??? otherwise.
- */
- byte MFRC522::MIFARE_Transfer( byte blockAddr ///< The block (0-0xff) number.
- ) {
- byte result;
- byte cmdBuffer[2]; // We only need room for 2 bytes.
- // Tell the PICC we want to transfer the result into block blockAddr.
- cmdBuffer[0] = PICC_CMD_MF_TRANSFER;
- cmdBuffer[1] = blockAddr;
- result = PCD_MIFARE_Transceive( cmdBuffer, 2); // Adds CRC_A and checks that the response is MF_ACK.
- if (result != STATUS_OK) {
- return result;
- }
- return STATUS_OK;
- } // End MIFARE_Transfer()
- /**
- * Helper routine to read the current value from a Value Block.
- *
- * Only for MIFARE Classic and only for blocks in "value block" mode, that
- * is: with access bits [C1 C2 C3] = [110] or [001]. The sector containing
- * the block must be authenticated before calling this function.
- *
- * @param[in] blockAddr The block (0x00-0xff) number.
- * @param[out] value Current value of the Value Block.
- * @return STATUS_OK on success, STATUS_??? otherwise.
- */
- byte MFRC522::MIFARE_GetValue(byte blockAddr, long *value) {
- byte status;
- byte buffer[18];
- byte size = sizeof(buffer);
- // Read the block
- status = MIFARE_Read(blockAddr, buffer, &size);
- if (status == STATUS_OK) {
- // Extract the value
- *value = (long(buffer[3])<<24) | (long(buffer[2])<<16) | (long(buffer[1])<<8) | long(buffer[0]);
- }
- return status;
- } // End MIFARE_GetValue()
- /**
- * Helper routine to write a specific value into a Value Block.
- *
- * Only for MIFARE Classic and only for blocks in "value block" mode, that
- * is: with access bits [C1 C2 C3] = [110] or [001]. The sector containing
- * the block must be authenticated before calling this function.
- *
- * @param[in] blockAddr The block (0x00-0xff) number.
- * @param[in] value New value of the Value Block.
- * @return STATUS_OK on success, STATUS_??? otherwise.
- */
- byte MFRC522::MIFARE_SetValue(byte blockAddr, long value) {
- byte buffer[18];
- // Translate the long into 4 bytes; repeated 2x in value block
- buffer[0] = buffer[ 8] = (value & 0xFF);
- buffer[1] = buffer[ 9] = (value & 0xFF00) >> 8;
- buffer[2] = buffer[10] = (value & 0xFF0000) >> 16;
- buffer[3] = buffer[11] = (value & 0xFF000000) >> 24;
- // Inverse 4 bytes also found in value block
- buffer[4] = ~buffer[0];
- buffer[5] = ~buffer[1];
- buffer[6] = ~buffer[2];
- buffer[7] = ~buffer[3];
- // Address 2x with inverse address 2x
- buffer[12] = buffer[14] = blockAddr;
- buffer[13] = buffer[15] = ~blockAddr;
- // Write the whole data block
- return MIFARE_Write(blockAddr, buffer, 16);
- } // End MIFARE_SetValue()
- /////////////////////////////////////////////////////////////////////////////////////
- // Support functions
- /////////////////////////////////////////////////////////////////////////////////////
- /**
- * Wrapper for MIFARE protocol communication.
- * Adds CRC_A, executes the Transceive command and checks that the response is MF_ACK or a timeout.
- *
- * @return STATUS_OK on success, STATUS_??? otherwise.
- */
- byte MFRC522::PCD_MIFARE_Transceive( byte *sendData, ///< Pointer to the data to transfer to the FIFO. Do NOT include the CRC_A.
- byte sendLen, ///< Number of bytes in sendData.
- bool acceptTimeout ///< True => A timeout is also success
- ) {
- byte result;
- byte cmdBuffer[18]; // We need room for 16 bytes data and 2 bytes CRC_A.
- // Sanity check
- if (sendData == NULL || sendLen > 16) {
- return STATUS_INVALID;
- }
- // Copy sendData[] to cmdBuffer[] and add CRC_A
- memcpy(cmdBuffer, sendData, sendLen);
- result = PCD_CalculateCRC(cmdBuffer, sendLen, &cmdBuffer[sendLen]);
- if (result != STATUS_OK) {
- return result;
- }
- sendLen += 2;
- // Transceive the data, store the reply in cmdBuffer[]
- byte waitIRq = 0x30; // RxIRq and IdleIRq
- byte cmdBufferSize = sizeof(cmdBuffer);
- byte validBits = 0;
- result = PCD_CommunicateWithPICC(PCD_Transceive, waitIRq, cmdBuffer, sendLen, cmdBuffer, &cmdBufferSize, &validBits);
- if (acceptTimeout && result == STATUS_TIMEOUT) {
- return STATUS_OK;
- }
- if (result != STATUS_OK) {
- return result;
- }
- // The PICC must reply with a 4 bit ACK
- if (cmdBufferSize != 1 || validBits != 4) {
- return STATUS_ERROR;
- }
- if (cmdBuffer[0] != MF_ACK) {
- return STATUS_MIFARE_NACK;
- }
- return STATUS_OK;
- } // End PCD_MIFARE_Transceive()
- /**
- * Returns a __FlashStringHelper pointer to a status code name.
- *
- * @return const __FlashStringHelper *
- */
- const __FlashStringHelper *MFRC522::GetStatusCodeName(byte code ///< One of the StatusCode enums.
- ) {
- switch (code) {
- case STATUS_OK: return F("Success."); break;
- case STATUS_ERROR: return F("Error in communication."); break;
- case STATUS_COLLISION: return F("Collission detected."); break;
- case STATUS_TIMEOUT: return F("Timeout in communication."); break;
- case STATUS_NO_ROOM: return F("A buffer is not big enough."); break;
- case STATUS_INTERNAL_ERROR: return F("Internal error in the code. Should not happen."); break;
- case STATUS_INVALID: return F("Invalid argument."); break;
- case STATUS_CRC_WRONG: return F("The CRC_A does not match."); break;
- case STATUS_MIFARE_NACK: return F("A MIFARE PICC responded with NAK."); break;
- default: return F("Unknown error"); break;
- }
- } // End GetStatusCodeName()
- /**
- * Translates the SAK (Select Acknowledge) to a PICC type.
- *
- * @return PICC_Type
- */
- byte MFRC522::PICC_GetType(byte sak ///< The SAK byte returned from PICC_Select().
- ) {
- if (sak & 0x04) { // UID not complete
- return PICC_TYPE_NOT_COMPLETE;
- }
- switch (sak) {
- case 0x09: return PICC_TYPE_MIFARE_MINI; break;
- case 0x08: return PICC_TYPE_MIFARE_1K; break;
- case 0x18: return PICC_TYPE_MIFARE_4K; break;
- case 0x00: return PICC_TYPE_MIFARE_UL; break;
- case 0x10:
- case 0x11: return PICC_TYPE_MIFARE_PLUS; break;
- case 0x01: return PICC_TYPE_TNP3XXX; break;
- default: break;
- }
- if (sak & 0x20) {
- return PICC_TYPE_ISO_14443_4;
- }
- if (sak & 0x40) {
- return PICC_TYPE_ISO_18092;
- }
- return PICC_TYPE_UNKNOWN;
- } // End PICC_GetType()
- /**
- * Returns a __FlashStringHelper pointer to the PICC type name.
- *
- * @return const __FlashStringHelper *
- */
- const __FlashStringHelper *MFRC522::PICC_GetTypeName(byte piccType ///< One of the PICC_Type enums.
- ) {
- switch (piccType) {
- case PICC_TYPE_ISO_14443_4: return F("PICC compliant with ISO/IEC 14443-4"); break;
- case PICC_TYPE_ISO_18092: return F("PICC compliant with ISO/IEC 18092 (NFC)");break;
- case PICC_TYPE_MIFARE_MINI: return F("MIFARE Mini, 320 bytes"); break;
- case PICC_TYPE_MIFARE_1K: return F("MIFARE 1KB"); break;
- case PICC_TYPE_MIFARE_4K: return F("MIFARE 4KB"); break;
- case PICC_TYPE_MIFARE_UL: return F("MIFARE Ultralight or Ultralight C"); break;
- case PICC_TYPE_MIFARE_PLUS: return F("MIFARE Plus"); break;
- case PICC_TYPE_TNP3XXX: return F("MIFARE TNP3XXX"); break;
- case PICC_TYPE_NOT_COMPLETE: return F("SAK indicates UID is not complete."); break;
- case PICC_TYPE_UNKNOWN:
- default: return F("Unknown type"); break;
- }
- } // End PICC_GetTypeName()
- /**
- * Dumps debug info about the selected PICC to Serial.
- * On success the PICC is halted after dumping the data.
- * For MIFARE Classic the factory default key of 0xFFFFFFFFFFFF is tried.
- */
- void MFRC522::PICC_DumpToSerial(Uid *uid ///< Pointer to Uid struct returned from a successful PICC_Select().
- ) {
- MIFARE_Key key;
- // UID
- Serial.print(F("Card UID:"));
- for (byte i = 0; i < uid->size; i++) {
- if(uid->uidByte[i] < 0x10)
- Serial.print(F(" 0"));
- else
- Serial.print(F(" "));
- Serial.print(uid->uidByte[i], HEX);
- }
- Serial.println();
- // PICC type
- byte piccType = PICC_GetType(uid->sak);
- Serial.print(F("PICC type: "));
- Serial.println(PICC_GetTypeName(piccType));
- // Dump contents
- switch (piccType) {
- case PICC_TYPE_MIFARE_MINI:
- case PICC_TYPE_MIFARE_1K:
- case PICC_TYPE_MIFARE_4K:
- // All keys are set to FFFFFFFFFFFFh at chip delivery from the factory.
- for (byte i = 0; i < 6; i++) {
- key.keyByte[i] = 0xFF;
- }
- PICC_DumpMifareClassicToSerial(uid, piccType, &key);
- break;
- case PICC_TYPE_MIFARE_UL:
- PICC_DumpMifareUltralightToSerial();
- break;
- case PICC_TYPE_ISO_14443_4:
- case PICC_TYPE_ISO_18092:
- case PICC_TYPE_MIFARE_PLUS:
- case PICC_TYPE_TNP3XXX:
- Serial.println(F("Dumping memory contents not implemented for that PICC type."));
- break;
- case PICC_TYPE_UNKNOWN:
- case PICC_TYPE_NOT_COMPLETE:
- default:
- break; // No memory dump here
- }
- Serial.println();
- PICC_HaltA(); // Already done if it was a MIFARE Classic PICC.
- } // End PICC_DumpToSerial()
- /**
- * Dumps memory contents of a MIFARE Classic PICC.
- * On success the PICC is halted after dumping the data.
- */
- void MFRC522::PICC_DumpMifareClassicToSerial( Uid *uid, ///< Pointer to Uid struct returned from a successful PICC_Select().
- byte piccType, ///< One of the PICC_Type enums.
- MIFARE_Key *key ///< Key A used for all sectors.
- ) {
- byte no_of_sectors = 0;
- switch (piccType) {
- case PICC_TYPE_MIFARE_MINI:
- // Has 5 sectors * 4 blocks/sector * 16 bytes/block = 320 bytes.
- no_of_sectors = 5;
- break;
- case PICC_TYPE_MIFARE_1K:
- // Has 16 sectors * 4 blocks/sector * 16 bytes/block = 1024 bytes.
- no_of_sectors = 16;
- break;
- case PICC_TYPE_MIFARE_4K:
- // Has (32 sectors * 4 blocks/sector + 8 sectors * 16 blocks/sector) * 16 bytes/block = 4096 bytes.
- no_of_sectors = 40;
- break;
- default: // Should not happen. Ignore.
- break;
- }
- // Dump sectors, highest address first.
- if (no_of_sectors) {
- Serial.println(F("Sector Block 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 AccessBits"));
- for (int8_t i = no_of_sectors - 1; i >= 0; i--) {
- PICC_DumpMifareClassicSectorToSerial(uid, key, i);
- }
- }
- PICC_HaltA(); // Halt the PICC before stopping the encrypted session.
- PCD_StopCrypto1();
- } // End PICC_DumpMifareClassicToSerial()
- /**
- * Dumps memory contents of a sector of a MIFARE Classic PICC.
- * Uses PCD_Authenticate(), MIFARE_Read() and PCD_StopCrypto1.
- * Always uses PICC_CMD_MF_AUTH_KEY_A because only Key A can always read the sector trailer access bits.
- */
- void MFRC522::PICC_DumpMifareClassicSectorToSerial(Uid *uid, ///< Pointer to Uid struct returned from a successful PICC_Select().
- MIFARE_Key *key, ///< Key A for the sector.
- byte sector ///< The sector to dump, 0..39.
- ) {
- byte status;
- byte firstBlock; // Address of lowest address to dump actually last block dumped)
- byte no_of_blocks; // Number of blocks in sector
- bool isSectorTrailer; // Set to true while handling the "last" (ie highest address) in the sector.
- // The access bits are stored in a peculiar fashion.
- // There are four groups:
- // g[3] Access bits for the sector trailer, block 3 (for sectors 0-31) or block 15 (for sectors 32-39)
- // g[2] Access bits for block 2 (for sectors 0-31) or blocks 10-14 (for sectors 32-39)
- // g[1] Access bits for block 1 (for sectors 0-31) or blocks 5-9 (for sectors 32-39)
- // g[0] Access bits for block 0 (for sectors 0-31) or blocks 0-4 (for sectors 32-39)
- // Each group has access bits [C1 C2 C3]. In this code C1 is MSB and C3 is LSB.
- // The four CX bits are stored together in a nible cx and an inverted nible cx_.
- byte c1, c2, c3; // Nibbles
- byte c1_, c2_, c3_; // Inverted nibbles
- bool invertedError; // True if one of the inverted nibbles did not match
- byte g[4]; // Access bits for each of the four groups.
- byte group; // 0-3 - active group for access bits
- bool firstInGroup; // True for the first block dumped in the group
- // Determine position and size of sector.
- if (sector < 32) { // Sectors 0..31 has 4 blocks each
- no_of_blocks = 4;
- firstBlock = sector * no_of_blocks;
- }
- else if (sector < 40) { // Sectors 32-39 has 16 blocks each
- no_of_blocks = 16;
- firstBlock = 128 + (sector - 32) * no_of_blocks;
- }
- else { // Illegal input, no MIFARE Classic PICC has more than 40 sectors.
- return;
- }
- // Dump blocks, highest address first.
- byte byteCount;
- byte buffer[18];
- byte blockAddr;
- isSectorTrailer = true;
- for (int8_t blockOffset = no_of_blocks - 1; blockOffset >= 0; blockOffset--) {
- blockAddr = firstBlock + blockOffset;
- // Sector number - only on first line
- if (isSectorTrailer) {
- if(sector < 10)
- Serial.print(F(" ")); // Pad with spaces
- else
- Serial.print(F(" ")); // Pad with spaces
- Serial.print(sector);
- Serial.print(F(" "));
- }
- else {
- Serial.print(F(" "));
- }
- // Block number
- if(blockAddr < 10)
- Serial.print(F(" ")); // Pad with spaces
- else {
- if(blockAddr < 100)
- Serial.print(F(" ")); // Pad with spaces
- else
- Serial.print(F(" ")); // Pad with spaces
- }
- Serial.print(blockAddr);
- Serial.print(F(" "));
- // Establish encrypted communications before reading the first block
- if (isSectorTrailer) {
- status = PCD_Authenticate(PICC_CMD_MF_AUTH_KEY_A, firstBlock, key, uid);
- if (status != STATUS_OK) {
- Serial.print(F("PCD_Authenticate() failed: "));
- Serial.println(GetStatusCodeName(status));
- return;
- }
- }
- // Read block
- byteCount = sizeof(buffer);
- status = MIFARE_Read(blockAddr, buffer, &byteCount);
- if (status != STATUS_OK) {
- Serial.print(F("MIFARE_Read() failed: "));
- Serial.println(GetStatusCodeName(status));
- continue;
- }
- // Dump data
- for (byte index = 0; index < 16; index++) {
- if(buffer[index] < 0x10)
- Serial.print(F(" 0"));
- else
- Serial.print(F(" "));
- Serial.print(buffer[index], HEX);
- if ((index % 4) == 3) {
- Serial.print(F(" "));
- }
- }
- // Parse sector trailer data
- if (isSectorTrailer) {
- c1 = buffer[7] >> 4;
- c2 = buffer[8] & 0xF;
- c3 = buffer[8] >> 4;
- c1_ = buffer[6] & 0xF;
- c2_ = buffer[6] >> 4;
- c3_ = buffer[7] & 0xF;
- invertedError = (c1 != (~c1_ & 0xF)) || (c2 != (~c2_ & 0xF)) || (c3 != (~c3_ & 0xF));
- g[0] = ((c1 & 1) << 2) | ((c2 & 1) << 1) | ((c3 & 1) << 0);
- g[1] = ((c1 & 2) << 1) | ((c2 & 2) << 0) | ((c3 & 2) >> 1);
- g[2] = ((c1 & 4) << 0) | ((c2 & 4) >> 1) | ((c3 & 4) >> 2);
- g[3] = ((c1 & 8) >> 1) | ((c2 & 8) >> 2) | ((c3 & 8) >> 3);
- isSectorTrailer = false;
- }
- // Which access group is this block in?
- if (no_of_blocks == 4) {
- group = blockOffset;
- firstInGroup = true;
- }
- else {
- group = blockOffset / 5;
- firstInGroup = (group == 3) || (group != (blockOffset + 1) / 5);
- }
- if (firstInGroup) {
- // Print access bits
- Serial.print(F(" [ "));
- Serial.print((g[group] >> 2) & 1, DEC); Serial.print(F(" "));
- Serial.print((g[group] >> 1) & 1, DEC); Serial.print(F(" "));
- Serial.print((g[group] >> 0) & 1, DEC);
- Serial.print(F(" ] "));
- if (invertedError) {
- Serial.print(F(" Inverted access bits did not match! "));
- }
- }
- if (group != 3 && (g[group] == 1 || g[group] == 6)) { // Not a sector trailer, a value block
- long value = (long(buffer[3])<<24) | (long(buffer[2])<<16) | (long(buffer[1])<<8) | long(buffer[0]);
- Serial.print(F(" Value=0x")); Serial.print(value, HEX);
- Serial.print(F(" Adr=0x")); Serial.print(buffer[12], HEX);
- }
- Serial.println();
- }
- return;
- } // End PICC_DumpMifareClassicSectorToSerial()
- /**
- * Dumps memory contents of a MIFARE Ultralight PICC.
- */
- void MFRC522::PICC_DumpMifareUltralightToSerial() {
- byte status;
- byte byteCount;
- byte buffer[18];
- byte i;
- Serial.println(F("Page 0 1 2 3"));
- // Try the mpages of the original Ultralight. Ultralight C has more pages.
- for (byte page = 0; page < 16; page +=4) { // Read returns data for 4 pages at a time.
- // Read pages
- byteCount = sizeof(buffer);
- status = MIFARE_Read(page, buffer, &byteCount);
- if (status != STATUS_OK) {
- Serial.print(F("MIFARE_Read() failed: "));
- Serial.println(GetStatusCodeName(status));
- break;
- }
- // Dump data
- for (byte offset = 0; offset < 4; offset++) {
- i = page + offset;
- if(i < 10)
- Serial.print(F(" ")); // Pad with spaces
- else
- Serial.print(F(" ")); // Pad with spaces
- Serial.print(i);
- Serial.print(F(" "));
- for (byte index = 0; index < 4; index++) {
- i = 4 * offset + index;
- if(buffer[i] < 0x10)
- Serial.print(F(" 0"));
- else
- Serial.print(F(" "));
- Serial.print(buffer[i], HEX);
- }
- Serial.println();
- }
- }
- } // End PICC_DumpMifareUltralightToSerial()
- /**
- * Calculates the bit pattern needed for the specified access bits. In the [C1 C2 C3] tupples C1 is MSB (=4) and C3 is LSB (=1).
- */
- void MFRC522::MIFARE_SetAccessBits( byte *accessBitBuffer, ///< Pointer to byte 6, 7 and 8 in the sector trailer. Bytes [0..2] will be set.
- byte g0, ///< Access bits [C1 C2 C3] for block 0 (for sectors 0-31) or blocks 0-4 (for sectors 32-39)
- byte g1, ///< Access bits C1 C2 C3] for block 1 (for sectors 0-31) or blocks 5-9 (for sectors 32-39)
- byte g2, ///< Access bits C1 C2 C3] for block 2 (for sectors 0-31) or blocks 10-14 (for sectors 32-39)
- byte g3 ///< Access bits C1 C2 C3] for the sector trailer, block 3 (for sectors 0-31) or block 15 (for sectors 32-39)
- ) {
- byte c1 = ((g3 & 4) << 1) | ((g2 & 4) << 0) | ((g1 & 4) >> 1) | ((g0 & 4) >> 2);
- byte c2 = ((g3 & 2) << 2) | ((g2 & 2) << 1) | ((g1 & 2) << 0) | ((g0 & 2) >> 1);
- byte c3 = ((g3 & 1) << 3) | ((g2 & 1) << 2) | ((g1 & 1) << 1) | ((g0 & 1) << 0);
- accessBitBuffer[0] = (~c2 & 0xF) << 4 | (~c1 & 0xF);
- accessBitBuffer[1] = c1 << 4 | (~c3 & 0xF);
- accessBitBuffer[2] = c3 << 4 | c2;
- } // End MIFARE_SetAccessBits()
- /**
- * Performs the "magic sequence" needed to get Chinese UID changeable
- * Mifare cards to allow writing to sector 0, where the card UID is stored.
- *
- * Note that you do not need to have selected the card through REQA or WUPA,
- * this sequence works immediately when the card is in the reader vicinity.
- * This means you can use this method even on "bricked" cards that your reader does
- * not recognise anymore (see MFRC522::MIFARE_UnbrickUidSector).
- *
- * Of course with non-bricked devices, you're free to select them before calling this function.
- */
- bool MFRC522::MIFARE_OpenUidBackdoor(bool logErrors) {
- // Magic sequence:
- // > 50 00 57 CD (HALT + CRC)
- // > 40 (7 bits only)
- // < A (4 bits only)
- // > 43
- // < A (4 bits only)
- // Then you can write to sector 0 without authenticating
- PICC_HaltA(); // 50 00 57 CD
- byte cmd = 0x40;
- byte validBits = 7; /* Our command is only 7 bits. After receiving card response,
- this will contain amount of valid response bits. */
- byte response[32]; // Card's response is written here
- byte received;
- byte status = PCD_TransceiveData(&cmd, (byte)1, response, &received, &validBits, (byte)0, false); // 40
- if(status != STATUS_OK) {
- if(logErrors) {
- Serial.println(F("Card did not respond to 0x40 after HALT command. Are you sure it is a UID changeable one?"));
- Serial.print(F("Error name: "));
- Serial.println(GetStatusCodeName(status));
- }
- return false;
- }
- if (received != 1 || response[0] != 0x0A) {
- if (logErrors) {
- Serial.print(F("Got bad response on backdoor 0x40 command: "));
- Serial.print(response[0], HEX);
- Serial.print(F(" ("));
- Serial.print(validBits);
- Serial.print(F(" valid bits)\r\n"));
- }
- return false;
- }
- cmd = 0x43;
- validBits = 8;
- status = PCD_TransceiveData(&cmd, (byte)1, response, &received, &validBits, (byte)0, false); // 43
- if(status != STATUS_OK) {
- if(logErrors) {
- Serial.println(F("Error in communication at command 0x43, after successfully executing 0x40"));
- Serial.print(F("Error name: "));
- Serial.println(GetStatusCodeName(status));
- }
- return false;
- }
- if (received != 1 || response[0] != 0x0A) {
- if (logErrors) {
- Serial.print(F("Got bad response on backdoor 0x43 command: "));
- Serial.print(response[0], HEX);
- Serial.print(F(" ("));
- Serial.print(validBits);
- Serial.print(F(" valid bits)\r\n"));
- }
- return false;
- }
- // You can now write to sector 0 without authenticating!
- return true;
- } // End MIFARE_OpenUidBackdoor()
- /**
- * Reads entire block 0, including all manufacturer data, and overwrites
- * that block with the new UID, a freshly calculated BCC, and the original
- * manufacturer data.
- *
- * It assumes a default KEY A of 0xFFFFFFFFFFFF.
- * Make sure to have selected the card before this function is called.
- */
- bool MFRC522::MIFARE_SetUid(byte *newUid, byte uidSize, bool logErrors) {
- // UID + BCC byte can not be larger than 16 together
- if (!newUid || !uidSize || uidSize > 15) {
- if (logErrors) {
- Serial.println(F("New UID buffer empty, size 0, or size > 15 given"));
- }
- return false;
- }
- // Authenticate for reading
- MIFARE_Key key = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF};
- byte status = PCD_Authenticate(MFRC522::PICC_CMD_MF_AUTH_KEY_A, (byte)1, &key, &uid);
- if (status != STATUS_OK) {
- if (status == STATUS_TIMEOUT) {
- // We get a read timeout if no card is selected yet, so let's select one
- // Wake the card up again if sleeping
- // byte atqa_answer[2];
- // byte atqa_size = 2;
- // PICC_WakeupA(atqa_answer, &atqa_size);
- if (!PICC_IsNewCardPresent() || !PICC_ReadCardSerial()) {
- Serial.println(F("No card was previously selected, and none are available. Failed to set UID."));
- return false;
- }
- status = PCD_Authenticate(MFRC522::PICC_CMD_MF_AUTH_KEY_A, (byte)1, &key, &uid);
- if (status != STATUS_OK) {
- // We tried, time to give up
- if (logErrors) {
- Serial.println(F("Failed to authenticate to card for reading, could not set UID: "));
- Serial.println(GetStatusCodeName(status));
- }
- return false;
- }
- }
- else {
- if (logErrors) {
- Serial.print(F("PCD_Authenticate() failed: "));
- Serial.println(GetStatusCodeName(status));
- }
- return false;
- }
- }
- // Read block 0
- byte block0_buffer[18];
- byte byteCount = sizeof(block0_buffer);
- status = MIFARE_Read((byte)0, block0_buffer, &byteCount);
- if (status != STATUS_OK) {
- if (logErrors) {
- Serial.print(F("MIFARE_Read() failed: "));
- Serial.println(GetStatusCodeName(status));
- Serial.println(F("Are you sure your KEY A for sector 0 is 0xFFFFFFFFFFFF?"));
- }
- return false;
- }
- // Write new UID to the data we just read, and calculate BCC byte
- byte bcc = 0;
- for (int i = 0; i < uidSize; i++) {
- block0_buffer[i] = newUid[i];
- bcc ^= newUid[i];
- }
- // Write BCC byte to buffer
- block0_buffer[uidSize] = bcc;
- // Stop encrypted traffic so we can send raw bytes
- PCD_StopCrypto1();
- // Activate UID backdoor
- if (!MIFARE_OpenUidBackdoor(logErrors)) {
- if (logErrors) {
- Serial.println(F("Activating the UID backdoor failed."));
- }
- return false;
- }
- // Write modified block 0 back to card
- status = MIFARE_Write((byte)0, block0_buffer, (byte)16);
- if (status != STATUS_OK) {
- if (logErrors) {
- Serial.print(F("MIFARE_Write() failed: "));
- Serial.println(GetStatusCodeName(status));
- }
- return false;
- }
- // Wake the card up again
- byte atqa_answer[2];
- byte atqa_size = 2;
- PICC_WakeupA(atqa_answer, &atqa_size);
- return true;
- }
- /**
- * Resets entire sector 0 to zeroes, so the card can be read again by readers.
- */
- bool MFRC522::MIFARE_UnbrickUidSector(bool logErrors) {
- MIFARE_OpenUidBackdoor(logErrors);
- byte block0_buffer[] = {0x01, 0x02, 0x03, 0x04, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
- // Write modified block 0 back to card
- byte status = MIFARE_Write((byte)0, block0_buffer, (byte)16);
- if (status != STATUS_OK) {
- if (logErrors) {
- Serial.print(F("MIFARE_Write() failed: "));
- Serial.println(GetStatusCodeName(status));
- }
- return false;
- }
- return true;
- }
- /////////////////////////////////////////////////////////////////////////////////////
- // Convenience functions - does not add extra functionality
- /////////////////////////////////////////////////////////////////////////////////////
- /**
- * Returns true if a PICC responds to PICC_CMD_REQA.
- * Only "new" cards in state IDLE are invited. Sleeping cards in state HALT are ignored.
- *
- * @return bool
- */
- bool MFRC522::PICC_IsNewCardPresent() {
- byte bufferATQA[2];
- byte bufferSize = sizeof(bufferATQA);
- byte result = PICC_RequestA(bufferATQA, &bufferSize);
- return (result == STATUS_OK || result == STATUS_COLLISION);
- } // End PICC_IsNewCardPresent()
- /**
- * Simple wrapper around PICC_Select.
- * Returns true if a UID could be read.
- * Remember to call PICC_IsNewCardPresent(), PICC_RequestA() or PICC_WakeupA() first.
- * The read UID is available in the class variable uid.
- *
- * @return bool
- */
- bool MFRC522::PICC_ReadCardSerial() {
- byte result = PICC_Select(&uid);
- return (result == STATUS_OK);
- } // End PICC_ReadCardSerial()
|