ammeter.cpp 6.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287
  1. #include "ammeter.h"
  2. #include "Wire.h"
  3. void Ammeter::i2cBegin() {
  4. // Wire.begin();
  5. }
  6. bool Ammeter::i2cReadBytes(uint8_t addr, uint8_t reg_addr, uint8_t* buff, uint16_t len) {
  7. Wire.beginTransmission(addr);
  8. Wire.write(reg_addr);
  9. uint8_t i = 0;
  10. if (Wire.endTransmission(false) == 0 && Wire.requestFrom(addr, (uint8_t)len)) {
  11. while (Wire.available()) {
  12. buff[i++] = Wire.read();
  13. }
  14. return true;
  15. }
  16. return false;
  17. }
  18. bool Ammeter::i2cWriteBytes(uint8_t addr, uint8_t reg_addr, uint8_t* buff, uint16_t len) {
  19. bool function_result = false;
  20. Wire.beginTransmission(addr);
  21. Wire.write(reg_addr);
  22. for(int i = 0; i < len; i++) {
  23. Wire.write(*(buff+i));
  24. }
  25. function_result = (Wire.endTransmission() == 0);
  26. return function_result;
  27. }
  28. bool Ammeter::i2cReadU16(uint8_t addr, uint8_t reg_addr, uint16_t* value) {
  29. uint8_t read_buf[2] = {0x00, 0x00};
  30. bool result = i2cReadBytes(addr, reg_addr, read_buf, 2);
  31. *value = (read_buf[0] << 8) | read_buf[1];
  32. return result;
  33. }
  34. bool Ammeter::i2cWriteU16(uint8_t addr, uint8_t reg_addr, uint16_t value) {
  35. uint8_t write_buf[2];
  36. write_buf[0] = value >> 8;
  37. write_buf[1] = value & 0xff;
  38. return i2cWriteBytes(addr, reg_addr, write_buf, 2);
  39. }
  40. float Ammeter::getResolution(ammeterGain_t gain) {
  41. switch (gain) {
  42. case PAG_6144:
  43. return ADS1115_MV_6144 / AMMETER_PRESSURE_COEFFICIENT;
  44. case PAG_4096:
  45. return ADS1115_MV_4096 / AMMETER_PRESSURE_COEFFICIENT;
  46. case PAG_2048:
  47. return ADS1115_MV_2048 / AMMETER_PRESSURE_COEFFICIENT;
  48. case PAG_1024:
  49. return ADS1115_MV_1024 / AMMETER_PRESSURE_COEFFICIENT;
  50. case PAG_512:
  51. return ADS1115_MV_512 / AMMETER_PRESSURE_COEFFICIENT;
  52. case PAG_256:
  53. return ADS1115_MV_256 / AMMETER_PRESSURE_COEFFICIENT;
  54. default:
  55. return ADS1115_MV_256 / AMMETER_PRESSURE_COEFFICIENT;
  56. };
  57. }
  58. uint8_t Ammeter::getPGAEEEPROMAddr(ammeterGain_t gain) {
  59. switch (gain) {
  60. case PAG_6144:
  61. return AMMETER_PAG_6144_CAL_ADDR;
  62. case PAG_4096:
  63. return AMMETER_PAG_4096_CAL_ADDR;
  64. case PAG_2048:
  65. return AMMETER_PAG_2048_CAL_ADDR;
  66. case PAG_1024:
  67. return AMMETER_PAG_1024_CAL_ADDR;
  68. case PAG_512:
  69. return AMMETER_PAG_512_CAL_ADDR;
  70. case PAG_256:
  71. return AMMETER_PAG_256_CAL_ADDR;
  72. default:
  73. return 0x00;
  74. };
  75. }
  76. uint16_t Ammeter::getCoverTime(ammeterRate_t rate) {
  77. switch (rate) {
  78. case RATE_8:
  79. return 1000 / 8;
  80. case RATE_16:
  81. return 1000 / 16;
  82. case RATE_32:
  83. return 1000 / 32;
  84. case RATE_64:
  85. return 1000 / 64;
  86. case RATE_128:
  87. return 1000 / 128;
  88. case RATE_250:
  89. return 1000 / 250;
  90. case RATE_475:
  91. return 1000 / 475;
  92. case RATE_860:
  93. return 1000 / 860;
  94. default:
  95. return 1000 / 128;
  96. };
  97. }
  98. Ammeter::Ammeter(uint8_t ads1115_addr, uint8_t eeprom_addr) {
  99. _ads1115_addr = ads1115_addr;
  100. _eeprom_addr = eeprom_addr;
  101. _gain = PAG_2048;
  102. _mode = SINGLESHOT;
  103. _rate = RATE_128;
  104. calibration_factor = 1;
  105. adc_raw = 0;
  106. resolution = getResolution(_gain);
  107. cover_time = getCoverTime(_rate);
  108. }
  109. void Ammeter::setGain(ammeterGain_t gain) {
  110. uint16_t reg_value = 0;
  111. bool result = i2cReadU16(_ads1115_addr, ADS1115_RA_CONFIG, &reg_value);
  112. if (result == false) {
  113. return;
  114. }
  115. reg_value &= ~(0b0111 << 9);
  116. reg_value |= gain << 9;
  117. result = i2cWriteU16(_ads1115_addr, ADS1115_RA_CONFIG, reg_value);
  118. if (result) {
  119. _gain = gain;
  120. resolution = getResolution(gain);
  121. int16_t hope = 1;
  122. int16_t actual = 1;
  123. if (readCalibrationFromEEPROM(gain, &hope, &actual)) {
  124. calibration_factor = fabs((double)hope / actual);
  125. }
  126. }
  127. }
  128. void Ammeter::setRate(ammeterRate_t rate) {
  129. uint16_t reg_value = 0;
  130. bool result = i2cReadU16(_ads1115_addr, ADS1115_RA_CONFIG, &reg_value);
  131. if (result == false) {
  132. return;
  133. }
  134. reg_value &= ~(0b0111 << 5);
  135. reg_value |= rate << 5;
  136. result = i2cWriteU16(_ads1115_addr, ADS1115_RA_CONFIG, reg_value);
  137. if (result) {
  138. _rate = rate;
  139. cover_time = getCoverTime(_rate);
  140. }
  141. return;
  142. }
  143. void Ammeter::setMode(ammeterMode_t mode) {
  144. uint16_t reg_value = 0;
  145. bool result = i2cReadU16(_ads1115_addr, ADS1115_RA_CONFIG, &reg_value);
  146. if (result == false) {
  147. return;
  148. }
  149. reg_value &= ~(0b0001 << 8);
  150. reg_value |= mode << 8;
  151. result = i2cWriteU16(_ads1115_addr, ADS1115_RA_CONFIG, reg_value);
  152. if (result) {
  153. _mode = mode;
  154. }
  155. return;
  156. }
  157. bool Ammeter::isInConversion() {
  158. uint16_t value = 0x00;
  159. i2cReadU16(_ads1115_addr, ADS1115_RA_CONFIG, &value);
  160. return (value & (1 << 15)) ? false : true;
  161. }
  162. void Ammeter::startSingleConversion() {
  163. uint16_t reg_value = 0;
  164. bool result = i2cReadU16(_ads1115_addr, ADS1115_RA_CONFIG, &reg_value);
  165. if (result == false) {
  166. return;
  167. }
  168. reg_value &= ~(0b0001 << 15);
  169. reg_value |= 0x01 << 15;
  170. i2cWriteU16(_ads1115_addr, ADS1115_RA_CONFIG, reg_value);
  171. }
  172. float Ammeter::getCurrent(bool calibration) {
  173. if (calibration) {
  174. return resolution * calibration_factor * getConversion() * AMMETER_MEASURING_DIR;
  175. } else {
  176. return resolution * getConversion() * AMMETER_MEASURING_DIR;
  177. }
  178. }
  179. int16_t Ammeter::getAdcRaw() {
  180. uint16_t value = 0x00;
  181. i2cReadU16(_ads1115_addr, ADS1115_RA_CONVERSION, &value);
  182. adc_raw = value;
  183. return value;
  184. }
  185. int16_t Ammeter::getConversion(uint16_t timeout) {
  186. if (_mode == SINGLESHOT) {
  187. startSingleConversion();
  188. delay(cover_time);
  189. uint64_t time = millis() + timeout;
  190. while (time > millis() && isInConversion());
  191. }
  192. return getAdcRaw();
  193. }
  194. bool Ammeter::EEPORMWrite(uint8_t address, uint8_t* buff, uint8_t len) {
  195. return i2cWriteBytes(_eeprom_addr, address, buff, len);
  196. }
  197. bool Ammeter::EEPORMRead(uint8_t address, uint8_t* buff, uint8_t len) {
  198. return i2cReadBytes(_eeprom_addr, address, buff, len);
  199. }
  200. bool Ammeter::saveCalibration2EEPROM(ammeterGain_t gain, int16_t hope, int16_t actual) {
  201. if (hope == 0 || actual == 0) {
  202. return false;
  203. }
  204. uint8_t buff[8];
  205. memset(buff, 0, 8);
  206. buff[0] = gain;
  207. buff[1] = hope >> 8;
  208. buff[2] = hope & 0xFF;
  209. buff[3] = actual >> 8;
  210. buff[4] = actual & 0xFF;
  211. for (uint8_t i = 0; i < 5; i++) {
  212. buff[5] ^= buff[i];
  213. }
  214. uint8_t addr = getPGAEEEPROMAddr(gain);
  215. return EEPORMWrite(addr, buff, 8);
  216. }
  217. bool Ammeter::readCalibrationFromEEPROM(ammeterGain_t gain, int16_t* hope, int16_t* actual) {
  218. uint8_t addr = getPGAEEEPROMAddr(gain);
  219. uint8_t buff[8];
  220. memset(buff, 0, 8);
  221. *hope = 1;
  222. *actual = 1;
  223. bool result = EEPORMRead(addr, buff, 8);
  224. if (result == false) {
  225. return false;
  226. }
  227. uint8_t xor_result = 0x00;
  228. for (uint8_t i = 0; i < 5; i++) {
  229. xor_result ^= buff[i];
  230. }
  231. if (xor_result != buff[5]) {
  232. return false;
  233. }
  234. *hope = (buff[1] << 8) | buff[2];
  235. *actual = (buff[3] << 8) | buff[4];
  236. return true;
  237. }