#include "voltmeter.h"
#include "Wire.h"

void Voltmeter::i2cBegin() {
  // Wire.begin();
}

bool Voltmeter::i2cReadBytes(uint8_t addr, uint8_t reg_addr, uint8_t* buff, uint16_t len) {
  Wire.beginTransmission(addr);
  Wire.write(reg_addr);
  uint8_t i = 0;
  if (Wire.endTransmission(false) == 0 && Wire.requestFrom(addr, (uint8_t)len)) {
    while (Wire.available()) {
      buff[i++] = Wire.read();
    }
    return true;
  }

  return false;
}

bool Voltmeter::i2cWriteBytes(uint8_t addr, uint8_t reg_addr, uint8_t* buff, uint16_t len) {
  bool function_result = false;

  Wire.beginTransmission(addr);
  Wire.write(reg_addr);                 
  for(int i = 0; i < len; i++) {
    Wire.write(*(buff+i));
  }
  function_result = (Wire.endTransmission() == 0);
  return function_result;
}

bool Voltmeter::i2cReadU16(uint8_t addr, uint8_t reg_addr, uint16_t* value) {
  uint8_t read_buf[2] = {0x00, 0x00};
  bool result = i2cReadBytes(addr, reg_addr, read_buf, 2);
  *value = (read_buf[0] << 8) | read_buf[1];
  return result;
}

bool Voltmeter::i2cWriteU16(uint8_t addr, uint8_t reg_addr, uint16_t value) {
  uint8_t write_buf[2];
  write_buf[0] = value >> 8;
  write_buf[1] = value & 0xff;
  return i2cWriteBytes(addr, reg_addr, write_buf, 2);
}

float Voltmeter::getResolution(voltmeterGain_t gain) {
  switch (gain) {
    case PAG_6144:
      return ADS1115_MV_6144 / VOLTMETER_PRESSURE_COEFFICIENT;
    case PAG_4096:
      return ADS1115_MV_4096 / VOLTMETER_PRESSURE_COEFFICIENT;
    case PAG_2048:
      return ADS1115_MV_2048 / VOLTMETER_PRESSURE_COEFFICIENT;
    case PAG_1024:
      return ADS1115_MV_1024 / VOLTMETER_PRESSURE_COEFFICIENT;
    case PAG_512:
      return ADS1115_MV_512 / VOLTMETER_PRESSURE_COEFFICIENT;
    case PAG_256:
      return ADS1115_MV_256 / VOLTMETER_PRESSURE_COEFFICIENT;
    default:
      return ADS1115_MV_256 / VOLTMETER_PRESSURE_COEFFICIENT;
  };
}

uint8_t Voltmeter::getPGAEEEPROMAddr(voltmeterGain_t gain) {
  switch (gain) {
    case PAG_6144:
      return VOLTMETER_PAG_6144_CAL_ADDR;
    case PAG_4096:
      return VOLTMETER_PAG_4096_CAL_ADDR;
    case PAG_2048:
      return VOLTMETER_PAG_2048_CAL_ADDR;
    case PAG_1024:
      return VOLTMETER_PAG_1024_CAL_ADDR;
    case PAG_512:
      return VOLTMETER_PAG_512_CAL_ADDR;
    case PAG_256:
      return VOLTMETER_PAG_256_CAL_ADDR;
    default:
      return 0x00;
  };
}

uint16_t Voltmeter::getCoverTime(voltmeterRate_t rate) {
  switch (rate) {
    case RATE_8:
      return 1000 / 8;
    case RATE_16:
      return 1000 / 16;
    case RATE_32:
      return 1000 / 32;
    case RATE_64:
      return 1000 / 64;
    case RATE_128:
      return 1000 / 128;
    case RATE_250:
      return 1000 / 250;
    case RATE_475:
      return 1000 / 475;
    case RATE_860:
      return 1000 / 860;
    default:
      return 1000 / 128;
  };
}

Voltmeter::Voltmeter(uint8_t ads1115_addr, uint8_t eeprom_addr) {
  _ads1115_addr = ads1115_addr;
  _eeprom_addr = eeprom_addr;
  _gain = PAG_2048;
  _mode = SINGLESHOT;
  _rate = RATE_128;
  calibration_factor = 1;
  adc_raw = 0;
  resolution = getResolution(_gain);
  cover_time = getCoverTime(_rate);
}

void Voltmeter::setGain(voltmeterGain_t gain) {
  uint16_t reg_value = 0;
  bool result = i2cReadU16(_ads1115_addr, ADS1115_RA_CONFIG, &reg_value);
 
  if (result == false) {
    return;
  }

  reg_value &= ~(0b0111 << 9);
  reg_value |= gain << 9;

  result = i2cWriteU16(_ads1115_addr, ADS1115_RA_CONFIG, reg_value);

  if (result) {
    _gain = gain;
    resolution = getResolution(gain);
    int16_t hope = 1;
    int16_t actual = 1;
    if (readCalibrationFromEEPROM(gain, &hope, &actual)) {
      calibration_factor = (double)hope / actual;
    }
  }
}

void Voltmeter::setRate(voltmeterRate_t rate) {
  uint16_t reg_value = 0;
  bool result = i2cReadU16(_ads1115_addr, ADS1115_RA_CONFIG, &reg_value);
  if (result == false) {
    return;
  }

  reg_value &= ~(0b0111 << 5);
  reg_value |= rate << 5;

  result = i2cWriteU16(_ads1115_addr, ADS1115_RA_CONFIG, reg_value);

  if (result) {
    _rate = rate;
    cover_time = getCoverTime(_rate);
  }

  return;
}

void Voltmeter::setMode(voltmeterMode_t mode) {
  uint16_t reg_value = 0;
  bool result = i2cReadU16(_ads1115_addr, ADS1115_RA_CONFIG, &reg_value);
  if (result == false) {
    return;
  }

  reg_value &= ~(0b0001 << 8);
  reg_value |= mode << 8;

  result = i2cWriteU16(_ads1115_addr, ADS1115_RA_CONFIG, reg_value);
  if (result) {
    _mode = mode;
  }

  return;
}

bool Voltmeter::isInConversion() {
  uint16_t value = 0x00;
  i2cReadU16(_ads1115_addr, ADS1115_RA_CONFIG, &value);

  return (value & (1 << 15)) ? false : true;
}

void Voltmeter::startSingleConversion() {
  uint16_t reg_value = 0;
  bool result = i2cReadU16(_ads1115_addr, ADS1115_RA_CONFIG, &reg_value);

  if (result == false) {
    return;
  }

  reg_value &= ~(0b0001 << 15);
  reg_value |= 0x01 << 15;

  i2cWriteU16(_ads1115_addr, ADS1115_RA_CONFIG, reg_value);
}

float Voltmeter::getVoltage(bool calibration) {
  if (calibration) {
    return resolution * calibration_factor * getConversion() * VOLTMETER_MEASURING_DIR;
  } else {
    return resolution * getConversion() * VOLTMETER_MEASURING_DIR;
  }
}

int16_t Voltmeter::getAdcRaw() {
  uint16_t value = 0x00;
  i2cReadU16(_ads1115_addr, ADS1115_RA_CONVERSION, &value);
  adc_raw = value;
  return value;
}

int16_t Voltmeter::getConversion(uint16_t timeout) {
  if (_mode == SINGLESHOT) {
    startSingleConversion();
    delay(cover_time);
    uint64_t time = millis() + timeout;
    while (time > millis() && isInConversion());
  }

  return getAdcRaw();
}

bool Voltmeter::EEPORMWrite(uint8_t address, uint8_t* buff, uint8_t len) {
  return i2cWriteBytes(_eeprom_addr, address, buff, len);
}

bool Voltmeter::EEPORMRead(uint8_t address, uint8_t* buff, uint8_t len) {
  return i2cReadBytes(_eeprom_addr, address, buff, len);
}

bool Voltmeter::saveCalibration2EEPROM(voltmeterGain_t gain, int16_t hope, int16_t actual) {
  if (hope == 0 || actual == 0) {
    return false;
  }

  uint8_t buff[8];
  memset(buff, 0, 8);
  buff[0] = gain;
  buff[1] = hope >> 8;
  buff[2] = hope & 0xFF;

  buff[3] = actual >> 8;
  buff[4] = actual & 0xFF;

  for (uint8_t i = 0; i < 5; i++) {
    buff[5] ^= buff[i];
  }

  uint8_t addr = getPGAEEEPROMAddr(gain);
  return EEPORMWrite(addr, buff, 8);
}

bool Voltmeter::readCalibrationFromEEPROM(voltmeterGain_t gain, int16_t* hope, int16_t* actual) {
  uint8_t addr = getPGAEEEPROMAddr(gain);
  uint8_t buff[8];
  memset(buff, 0, 8);

  *hope = 1;
  *actual = 1;

  bool result = EEPORMRead(addr, buff, 8);
  
  if (result == false) {
    return false;
  }

  uint8_t xor_result = 0x00;
  for (uint8_t i = 0; i < 5; i++) {
    xor_result ^= buff[i];
  }

  if (xor_result != buff[5]) {
    return false;
  }

  *hope = (buff[1] << 8) | buff[2];
  *actual = (buff[3] << 8) | buff[4];
  return true;
}