123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289 |
- //=====================================================================================================
- // MadgwickAHRS.c
- //=====================================================================================================
- //
- // Implementation of Madgwick's IMU and AHRS algorithms.
- // See: http://www.x-io.co.uk/node/8#open_source_ahrs_and_imu_algorithms
- //
- // Date Author Notes
- // 29/09/2011 SOH Madgwick Initial release
- // 02/10/2011 SOH Madgwick Optimised for reduced CPU load
- // 19/02/2012 SOH Madgwick Magnetometer measurement is normalised
- //
- //=====================================================================================================
- //---------------------------------------------------------------------------------------------------
- // Header files
- #include "MadgwickAHRS.h"
- #include <math.h>
- //---------------------------------------------------------------------------------------------------
- // Definitions
- #define RAD_TO_DEG 57.295779513082320876798154814105
- #define sampleFreq 500.0f // sample frequency in Hz
- #define betaDef 10.0f // 2 * proportional gain
- //---------------------------------------------------------------------------------------------------
- // Variable definitions
- volatile float beta = betaDef; // 2 * proportional gain (Kp)
- volatile static float
- q0 = 1.0f,
- q1 = 0.0f, q2 = 0.0f,
- q3 = 0.0f; // quaternion of sensor frame relative to auxiliary frame
- //---------------------------------------------------------------------------------------------------
- // Function declarations
- static float invSqrt(float x);
- //====================================================================================================
- // Functions
- void MadgwickAHRSetBeta(float beta_in) { beta = beta_in; }
- //---------------------------------------------------------------------------------------------------
- // AHRS algorithm update
- void MadgwickAHRSupdate(float gx, float gy, float gz, float ax, float ay,
- float az, float mx, float my, float mz) {
- float recipNorm;
- float s0, s1, s2, s3;
- float qDot1, qDot2, qDot3, qDot4;
- float hx, hy;
- float _2q0mx, _2q0my, _2q0mz, _2q1mx, _2bx, _2bz, _4bx, _4bz, _2q0, _2q1,
- _2q2, _2q3, _2q0q2, _2q2q3, q0q0, q0q1, q0q2, q0q3, q1q1, q1q2, q1q3,
- q2q2, q2q3, q3q3;
- // Use IMU algorithm if magnetometer measurement invalid (avoids NaN in
- // magnetometer normalisation) if((mx == 0.0f) && (my == 0.0f) && (mz ==
- // 0.0f)) { MadgwickAHRSupdateIMU(gx, gy, gz, ax, ay, az); return;
- // }
- // Rate of change of quaternion from gyroscope
- qDot1 = 0.5f * (-q1 * gx - q2 * gy - q3 * gz);
- qDot2 = 0.5f * (q0 * gx + q2 * gz - q3 * gy);
- qDot3 = 0.5f * (q0 * gy - q1 * gz + q3 * gx);
- qDot4 = 0.5f * (q0 * gz + q1 * gy - q2 * gx);
- // Compute feedback only if accelerometer measurement valid (avoids NaN in
- // accelerometer normalisation)
- if (!((ax == 0.0f) && (ay == 0.0f) && (az == 0.0f))) {
- // Normalise accelerometer measurement
- recipNorm = invSqrt(ax * ax + ay * ay + az * az);
- ax *= recipNorm;
- ay *= recipNorm;
- az *= recipNorm;
- // Normalise magnetometer measurement
- recipNorm = invSqrt(mx * mx + my * my + mz * mz);
- mx *= recipNorm;
- my *= recipNorm;
- mz *= recipNorm;
- // Auxiliary variables to avoid repeated arithmetic
- _2q0mx = 2.0f * q0 * mx;
- _2q0my = 2.0f * q0 * my;
- _2q0mz = 2.0f * q0 * mz;
- _2q1mx = 2.0f * q1 * mx;
- _2q0 = 2.0f * q0;
- _2q1 = 2.0f * q1;
- _2q2 = 2.0f * q2;
- _2q3 = 2.0f * q3;
- _2q0q2 = 2.0f * q0 * q2;
- _2q2q3 = 2.0f * q2 * q3;
- q0q0 = q0 * q0;
- q0q1 = q0 * q1;
- q0q2 = q0 * q2;
- q0q3 = q0 * q3;
- q1q1 = q1 * q1;
- q1q2 = q1 * q2;
- q1q3 = q1 * q3;
- q2q2 = q2 * q2;
- q2q3 = q2 * q3;
- q3q3 = q3 * q3;
- // Reference direction of Earth's magnetic field
- hx = mx * q0q0 - _2q0my * q3 + _2q0mz * q2 + mx * q1q1 +
- _2q1 * my * q2 + _2q1 * mz * q3 - mx * q2q2 - mx * q3q3;
- hy = _2q0mx * q3 + my * q0q0 - _2q0mz * q1 + _2q1mx * q2 - my * q1q1 +
- my * q2q2 + _2q2 * mz * q3 - my * q3q3;
- _2bx = sqrt(hx * hx + hy * hy);
- _2bz = -_2q0mx * q2 + _2q0my * q1 + mz * q0q0 + _2q1mx * q3 -
- mz * q1q1 + _2q2 * my * q3 - mz * q2q2 + mz * q3q3;
- _4bx = 2.0f * _2bx;
- _4bz = 2.0f * _2bz;
- // Gradient decent algorithm corrective step
- s0 = -_2q2 * (2.0f * q1q3 - _2q0q2 - ax) +
- _2q1 * (2.0f * q0q1 + _2q2q3 - ay) -
- _2bz * q2 *
- (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) +
- (-_2bx * q3 + _2bz * q1) *
- (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) +
- _2bx * q2 *
- (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz);
- s1 = _2q3 * (2.0f * q1q3 - _2q0q2 - ax) +
- _2q0 * (2.0f * q0q1 + _2q2q3 - ay) -
- 4.0f * q1 * (1 - 2.0f * q1q1 - 2.0f * q2q2 - az) +
- _2bz * q3 *
- (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) +
- (_2bx * q2 + _2bz * q0) *
- (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) +
- (_2bx * q3 - _4bz * q1) *
- (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz);
- s2 = -_2q0 * (2.0f * q1q3 - _2q0q2 - ax) +
- _2q3 * (2.0f * q0q1 + _2q2q3 - ay) -
- 4.0f * q2 * (1 - 2.0f * q1q1 - 2.0f * q2q2 - az) +
- (-_4bx * q2 - _2bz * q0) *
- (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) +
- (_2bx * q1 + _2bz * q3) *
- (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) +
- (_2bx * q0 - _4bz * q2) *
- (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz);
- s3 = _2q1 * (2.0f * q1q3 - _2q0q2 - ax) +
- _2q2 * (2.0f * q0q1 + _2q2q3 - ay) +
- (-_4bx * q3 + _2bz * q1) *
- (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) +
- (-_2bx * q0 + _2bz * q2) *
- (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) +
- _2bx * q1 *
- (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz);
- recipNorm = invSqrt(s0 * s0 + s1 * s1 + s2 * s2 +
- s3 * s3); // normalise step magnitude
- s0 *= recipNorm;
- s1 *= recipNorm;
- s2 *= recipNorm;
- s3 *= recipNorm;
- // Apply feedback step
- qDot1 -= beta * s0;
- qDot2 -= beta * s1;
- qDot3 -= beta * s2;
- qDot4 -= beta * s3;
- }
- // Integrate rate of change of quaternion to yield quaternion
- q0 += qDot1 * (1.0f / sampleFreq);
- q1 += qDot2 * (1.0f / sampleFreq);
- q2 += qDot3 * (1.0f / sampleFreq);
- q3 += qDot4 * (1.0f / sampleFreq);
- // Normalise quaternion
- recipNorm = invSqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3);
- q0 *= recipNorm;
- q1 *= recipNorm;
- q2 *= recipNorm;
- q3 *= recipNorm;
- }
- //---------------------------------------------------------------------------------------------------
- // IMU algorithm update
- void MadgwickAHRSupdateIMU(float gx, float gy, float gz, float ax, float ay,
- float az, float *pitch, float *roll, float *yaw) {
- float recipNorm;
- float s0, s1, s2, s3;
- float qDot1, qDot2, qDot3, qDot4;
- float _2q0, _2q1, _2q2, _2q3, _4q0, _4q1, _4q2, _8q1, _8q2, q0q0, q1q1,
- q2q2, q3q3;
- // Rate of change of quaternion from gyroscope
- qDot1 = 0.5f * (-q1 * gx - q2 * gy - q3 * gz);
- qDot2 = 0.5f * (q0 * gx + q2 * gz - q3 * gy);
- qDot3 = 0.5f * (q0 * gy - q1 * gz + q3 * gx);
- qDot4 = 0.5f * (q0 * gz + q1 * gy - q2 * gx);
- // Compute feedback only if accelerometer measurement valid (avoids NaN in
- // accelerometer normalisation)
- if (!((ax == 0.0f) && (ay == 0.0f) && (az == 0.0f))) {
- // Normalise accelerometer measurement
- recipNorm = invSqrt(ax * ax + ay * ay + az * az);
- ax *= recipNorm;
- ay *= recipNorm;
- az *= recipNorm;
- // Auxiliary variables to avoid repeated arithmetic
- _2q0 = 2.0f * q0;
- _2q1 = 2.0f * q1;
- _2q2 = 2.0f * q2;
- _2q3 = 2.0f * q3;
- _4q0 = 4.0f * q0;
- _4q1 = 4.0f * q1;
- _4q2 = 4.0f * q2;
- _8q1 = 8.0f * q1;
- _8q2 = 8.0f * q2;
- q0q0 = q0 * q0;
- q1q1 = q1 * q1;
- q2q2 = q2 * q2;
- q3q3 = q3 * q3;
- // Gradient decent algorithm corrective step
- s0 = _4q0 * q2q2 + _2q2 * ax + _4q0 * q1q1 - _2q1 * ay;
- s1 = _4q1 * q3q3 - _2q3 * ax + 4.0f * q0q0 * q1 - _2q0 * ay - _4q1 +
- _8q1 * q1q1 + _8q1 * q2q2 + _4q1 * az;
- s2 = 4.0f * q0q0 * q2 + _2q0 * ax + _4q2 * q3q3 - _2q3 * ay - _4q2 +
- _8q2 * q1q1 + _8q2 * q2q2 + _4q2 * az;
- s3 = 4.0f * q1q1 * q3 - _2q1 * ax + 4.0f * q2q2 * q3 - _2q2 * ay;
- recipNorm = invSqrt(s0 * s0 + s1 * s1 + s2 * s2 +
- s3 * s3); // normalise step magnitude
- s0 *= recipNorm;
- s1 *= recipNorm;
- s2 *= recipNorm;
- s3 *= recipNorm;
- // Apply feedback step
- qDot1 -= beta * s0;
- qDot2 -= beta * s1;
- qDot3 -= beta * s2;
- qDot4 -= beta * s3;
- }
- // Integrate rate of change of quaternion to yield quaternion
- q0 += qDot1 * (1.0f / sampleFreq);
- q1 += qDot2 * (1.0f / sampleFreq);
- q2 += qDot3 * (1.0f / sampleFreq);
- q3 += qDot4 * (1.0f / sampleFreq);
- // Normalise quaternion
- recipNorm = invSqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3);
- q0 *= recipNorm;
- q1 *= recipNorm;
- q2 *= recipNorm;
- q3 *= recipNorm;
- *pitch = asin(-2 * q1 * q3 + 2 * q0 * q2); // pitch
- *roll = atan2(2 * q2 * q3 + 2 * q0 * q1,
- -2 * q1 * q1 - 2 * q2 * q2 + 1); // roll
- *yaw = atan2(2 * (q1 * q2 + q0 * q3),
- q0 * q0 + q1 * q1 - q2 * q2 - q3 * q3); // yaw
- *pitch *= RAD_TO_DEG;
- *yaw *= RAD_TO_DEG;
- // Declination of SparkFun Electronics (40°05'26.6"N 105°11'05.9"W) is
- // 8° 30' E ± 0° 21' (or 8.5°) on 2016-07-19
- // - http://www.ngdc.noaa.gov/geomag-web/#declination
- *yaw -= 8.5;
- *roll *= RAD_TO_DEG;
- }
- //---------------------------------------------------------------------------------------------------
- // Fast inverse square-root
- // See: http://en.wikipedia.org/wiki/Fast_inverse_square_root
- static float invSqrt(float x) {
- float halfx = 0.5f * x;
- float y = x;
- long i = *(long *)&y;
- i = 0x5f3759df - (i >> 1);
- y = *(float *)&i;
- y = y * (1.5f - (halfx * y * y));
- return y;
- }
- //====================================================================================================
- // END OF CODE
- //====================================================================================================
|