MadgwickAHRS.cpp 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289
  1. //=====================================================================================================
  2. // MadgwickAHRS.c
  3. //=====================================================================================================
  4. //
  5. // Implementation of Madgwick's IMU and AHRS algorithms.
  6. // See: http://www.x-io.co.uk/node/8#open_source_ahrs_and_imu_algorithms
  7. //
  8. // Date Author Notes
  9. // 29/09/2011 SOH Madgwick Initial release
  10. // 02/10/2011 SOH Madgwick Optimised for reduced CPU load
  11. // 19/02/2012 SOH Madgwick Magnetometer measurement is normalised
  12. //
  13. //=====================================================================================================
  14. //---------------------------------------------------------------------------------------------------
  15. // Header files
  16. #include "MadgwickAHRS.h"
  17. #include <math.h>
  18. //---------------------------------------------------------------------------------------------------
  19. // Definitions
  20. #define RAD_TO_DEG 57.295779513082320876798154814105
  21. #define sampleFreq 500.0f // sample frequency in Hz
  22. #define betaDef 10.0f // 2 * proportional gain
  23. //---------------------------------------------------------------------------------------------------
  24. // Variable definitions
  25. volatile float beta = betaDef; // 2 * proportional gain (Kp)
  26. volatile static float
  27. q0 = 1.0f,
  28. q1 = 0.0f, q2 = 0.0f,
  29. q3 = 0.0f; // quaternion of sensor frame relative to auxiliary frame
  30. //---------------------------------------------------------------------------------------------------
  31. // Function declarations
  32. static float invSqrt(float x);
  33. //====================================================================================================
  34. // Functions
  35. void MadgwickAHRSetBeta(float beta_in) { beta = beta_in; }
  36. //---------------------------------------------------------------------------------------------------
  37. // AHRS algorithm update
  38. void MadgwickAHRSupdate(float gx, float gy, float gz, float ax, float ay,
  39. float az, float mx, float my, float mz) {
  40. float recipNorm;
  41. float s0, s1, s2, s3;
  42. float qDot1, qDot2, qDot3, qDot4;
  43. float hx, hy;
  44. float _2q0mx, _2q0my, _2q0mz, _2q1mx, _2bx, _2bz, _4bx, _4bz, _2q0, _2q1,
  45. _2q2, _2q3, _2q0q2, _2q2q3, q0q0, q0q1, q0q2, q0q3, q1q1, q1q2, q1q3,
  46. q2q2, q2q3, q3q3;
  47. // Use IMU algorithm if magnetometer measurement invalid (avoids NaN in
  48. // magnetometer normalisation) if((mx == 0.0f) && (my == 0.0f) && (mz ==
  49. // 0.0f)) { MadgwickAHRSupdateIMU(gx, gy, gz, ax, ay, az); return;
  50. // }
  51. // Rate of change of quaternion from gyroscope
  52. qDot1 = 0.5f * (-q1 * gx - q2 * gy - q3 * gz);
  53. qDot2 = 0.5f * (q0 * gx + q2 * gz - q3 * gy);
  54. qDot3 = 0.5f * (q0 * gy - q1 * gz + q3 * gx);
  55. qDot4 = 0.5f * (q0 * gz + q1 * gy - q2 * gx);
  56. // Compute feedback only if accelerometer measurement valid (avoids NaN in
  57. // accelerometer normalisation)
  58. if (!((ax == 0.0f) && (ay == 0.0f) && (az == 0.0f))) {
  59. // Normalise accelerometer measurement
  60. recipNorm = invSqrt(ax * ax + ay * ay + az * az);
  61. ax *= recipNorm;
  62. ay *= recipNorm;
  63. az *= recipNorm;
  64. // Normalise magnetometer measurement
  65. recipNorm = invSqrt(mx * mx + my * my + mz * mz);
  66. mx *= recipNorm;
  67. my *= recipNorm;
  68. mz *= recipNorm;
  69. // Auxiliary variables to avoid repeated arithmetic
  70. _2q0mx = 2.0f * q0 * mx;
  71. _2q0my = 2.0f * q0 * my;
  72. _2q0mz = 2.0f * q0 * mz;
  73. _2q1mx = 2.0f * q1 * mx;
  74. _2q0 = 2.0f * q0;
  75. _2q1 = 2.0f * q1;
  76. _2q2 = 2.0f * q2;
  77. _2q3 = 2.0f * q3;
  78. _2q0q2 = 2.0f * q0 * q2;
  79. _2q2q3 = 2.0f * q2 * q3;
  80. q0q0 = q0 * q0;
  81. q0q1 = q0 * q1;
  82. q0q2 = q0 * q2;
  83. q0q3 = q0 * q3;
  84. q1q1 = q1 * q1;
  85. q1q2 = q1 * q2;
  86. q1q3 = q1 * q3;
  87. q2q2 = q2 * q2;
  88. q2q3 = q2 * q3;
  89. q3q3 = q3 * q3;
  90. // Reference direction of Earth's magnetic field
  91. hx = mx * q0q0 - _2q0my * q3 + _2q0mz * q2 + mx * q1q1 +
  92. _2q1 * my * q2 + _2q1 * mz * q3 - mx * q2q2 - mx * q3q3;
  93. hy = _2q0mx * q3 + my * q0q0 - _2q0mz * q1 + _2q1mx * q2 - my * q1q1 +
  94. my * q2q2 + _2q2 * mz * q3 - my * q3q3;
  95. _2bx = sqrt(hx * hx + hy * hy);
  96. _2bz = -_2q0mx * q2 + _2q0my * q1 + mz * q0q0 + _2q1mx * q3 -
  97. mz * q1q1 + _2q2 * my * q3 - mz * q2q2 + mz * q3q3;
  98. _4bx = 2.0f * _2bx;
  99. _4bz = 2.0f * _2bz;
  100. // Gradient decent algorithm corrective step
  101. s0 = -_2q2 * (2.0f * q1q3 - _2q0q2 - ax) +
  102. _2q1 * (2.0f * q0q1 + _2q2q3 - ay) -
  103. _2bz * q2 *
  104. (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) +
  105. (-_2bx * q3 + _2bz * q1) *
  106. (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) +
  107. _2bx * q2 *
  108. (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz);
  109. s1 = _2q3 * (2.0f * q1q3 - _2q0q2 - ax) +
  110. _2q0 * (2.0f * q0q1 + _2q2q3 - ay) -
  111. 4.0f * q1 * (1 - 2.0f * q1q1 - 2.0f * q2q2 - az) +
  112. _2bz * q3 *
  113. (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) +
  114. (_2bx * q2 + _2bz * q0) *
  115. (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) +
  116. (_2bx * q3 - _4bz * q1) *
  117. (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz);
  118. s2 = -_2q0 * (2.0f * q1q3 - _2q0q2 - ax) +
  119. _2q3 * (2.0f * q0q1 + _2q2q3 - ay) -
  120. 4.0f * q2 * (1 - 2.0f * q1q1 - 2.0f * q2q2 - az) +
  121. (-_4bx * q2 - _2bz * q0) *
  122. (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) +
  123. (_2bx * q1 + _2bz * q3) *
  124. (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) +
  125. (_2bx * q0 - _4bz * q2) *
  126. (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz);
  127. s3 = _2q1 * (2.0f * q1q3 - _2q0q2 - ax) +
  128. _2q2 * (2.0f * q0q1 + _2q2q3 - ay) +
  129. (-_4bx * q3 + _2bz * q1) *
  130. (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) +
  131. (-_2bx * q0 + _2bz * q2) *
  132. (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) +
  133. _2bx * q1 *
  134. (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz);
  135. recipNorm = invSqrt(s0 * s0 + s1 * s1 + s2 * s2 +
  136. s3 * s3); // normalise step magnitude
  137. s0 *= recipNorm;
  138. s1 *= recipNorm;
  139. s2 *= recipNorm;
  140. s3 *= recipNorm;
  141. // Apply feedback step
  142. qDot1 -= beta * s0;
  143. qDot2 -= beta * s1;
  144. qDot3 -= beta * s2;
  145. qDot4 -= beta * s3;
  146. }
  147. // Integrate rate of change of quaternion to yield quaternion
  148. q0 += qDot1 * (1.0f / sampleFreq);
  149. q1 += qDot2 * (1.0f / sampleFreq);
  150. q2 += qDot3 * (1.0f / sampleFreq);
  151. q3 += qDot4 * (1.0f / sampleFreq);
  152. // Normalise quaternion
  153. recipNorm = invSqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3);
  154. q0 *= recipNorm;
  155. q1 *= recipNorm;
  156. q2 *= recipNorm;
  157. q3 *= recipNorm;
  158. }
  159. //---------------------------------------------------------------------------------------------------
  160. // IMU algorithm update
  161. void MadgwickAHRSupdateIMU(float gx, float gy, float gz, float ax, float ay,
  162. float az, float *pitch, float *roll, float *yaw) {
  163. float recipNorm;
  164. float s0, s1, s2, s3;
  165. float qDot1, qDot2, qDot3, qDot4;
  166. float _2q0, _2q1, _2q2, _2q3, _4q0, _4q1, _4q2, _8q1, _8q2, q0q0, q1q1,
  167. q2q2, q3q3;
  168. // Rate of change of quaternion from gyroscope
  169. qDot1 = 0.5f * (-q1 * gx - q2 * gy - q3 * gz);
  170. qDot2 = 0.5f * (q0 * gx + q2 * gz - q3 * gy);
  171. qDot3 = 0.5f * (q0 * gy - q1 * gz + q3 * gx);
  172. qDot4 = 0.5f * (q0 * gz + q1 * gy - q2 * gx);
  173. // Compute feedback only if accelerometer measurement valid (avoids NaN in
  174. // accelerometer normalisation)
  175. if (!((ax == 0.0f) && (ay == 0.0f) && (az == 0.0f))) {
  176. // Normalise accelerometer measurement
  177. recipNorm = invSqrt(ax * ax + ay * ay + az * az);
  178. ax *= recipNorm;
  179. ay *= recipNorm;
  180. az *= recipNorm;
  181. // Auxiliary variables to avoid repeated arithmetic
  182. _2q0 = 2.0f * q0;
  183. _2q1 = 2.0f * q1;
  184. _2q2 = 2.0f * q2;
  185. _2q3 = 2.0f * q3;
  186. _4q0 = 4.0f * q0;
  187. _4q1 = 4.0f * q1;
  188. _4q2 = 4.0f * q2;
  189. _8q1 = 8.0f * q1;
  190. _8q2 = 8.0f * q2;
  191. q0q0 = q0 * q0;
  192. q1q1 = q1 * q1;
  193. q2q2 = q2 * q2;
  194. q3q3 = q3 * q3;
  195. // Gradient decent algorithm corrective step
  196. s0 = _4q0 * q2q2 + _2q2 * ax + _4q0 * q1q1 - _2q1 * ay;
  197. s1 = _4q1 * q3q3 - _2q3 * ax + 4.0f * q0q0 * q1 - _2q0 * ay - _4q1 +
  198. _8q1 * q1q1 + _8q1 * q2q2 + _4q1 * az;
  199. s2 = 4.0f * q0q0 * q2 + _2q0 * ax + _4q2 * q3q3 - _2q3 * ay - _4q2 +
  200. _8q2 * q1q1 + _8q2 * q2q2 + _4q2 * az;
  201. s3 = 4.0f * q1q1 * q3 - _2q1 * ax + 4.0f * q2q2 * q3 - _2q2 * ay;
  202. recipNorm = invSqrt(s0 * s0 + s1 * s1 + s2 * s2 +
  203. s3 * s3); // normalise step magnitude
  204. s0 *= recipNorm;
  205. s1 *= recipNorm;
  206. s2 *= recipNorm;
  207. s3 *= recipNorm;
  208. // Apply feedback step
  209. qDot1 -= beta * s0;
  210. qDot2 -= beta * s1;
  211. qDot3 -= beta * s2;
  212. qDot4 -= beta * s3;
  213. }
  214. // Integrate rate of change of quaternion to yield quaternion
  215. q0 += qDot1 * (1.0f / sampleFreq);
  216. q1 += qDot2 * (1.0f / sampleFreq);
  217. q2 += qDot3 * (1.0f / sampleFreq);
  218. q3 += qDot4 * (1.0f / sampleFreq);
  219. // Normalise quaternion
  220. recipNorm = invSqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3);
  221. q0 *= recipNorm;
  222. q1 *= recipNorm;
  223. q2 *= recipNorm;
  224. q3 *= recipNorm;
  225. *pitch = asin(-2 * q1 * q3 + 2 * q0 * q2); // pitch
  226. *roll = atan2(2 * q2 * q3 + 2 * q0 * q1,
  227. -2 * q1 * q1 - 2 * q2 * q2 + 1); // roll
  228. *yaw = atan2(2 * (q1 * q2 + q0 * q3),
  229. q0 * q0 + q1 * q1 - q2 * q2 - q3 * q3); // yaw
  230. *pitch *= RAD_TO_DEG;
  231. *yaw *= RAD_TO_DEG;
  232. // Declination of SparkFun Electronics (40°05'26.6"N 105°11'05.9"W) is
  233. // 8° 30' E ± 0° 21' (or 8.5°) on 2016-07-19
  234. // - http://www.ngdc.noaa.gov/geomag-web/#declination
  235. *yaw -= 8.5;
  236. *roll *= RAD_TO_DEG;
  237. }
  238. //---------------------------------------------------------------------------------------------------
  239. // Fast inverse square-root
  240. // See: http://en.wikipedia.org/wiki/Fast_inverse_square_root
  241. static float invSqrt(float x) {
  242. float halfx = 0.5f * x;
  243. float y = x;
  244. long i = *(long *)&y;
  245. i = 0x5f3759df - (i >> 1);
  246. y = *(float *)&i;
  247. y = y * (1.5f - (halfx * y * y));
  248. return y;
  249. }
  250. //====================================================================================================
  251. // END OF CODE
  252. //====================================================================================================